Supporting information

Reaction-based Indicator displacement Assay (RIA) for the selective colorimetric and fluorimetric detection of peroxynitrite†

Xiaolong Sun,a Karel Lacina,a,e Elena C. Ramsamy,a Stephen E. Flower,a John S. Fossey,b Xuhong Qian,c Eric V. Anslynad Steven D. Bullae and Tony D. Jamesae

a Department of Chemistry, University of Bath, BA2 7AY, UK;
b School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK;
c School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China;
d Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas, 78712, United States;
e CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.

Contents

1. Supplementary spectra ...2
2. Notes and references ...7
3. NMR spectra ...7
1. Supplementary spectra

Figure S1. (a) UV-Vis absorption spectra and (b) Fluorescence spectra ($\lambda_{ex} = 460$ nm) of ARS only (50 μM), ARS-PBA (ARS, 50 μM; PBA, 200 μM), ARS-BBA (ARS, 50 μM; BBA, 200 μM), ARS-NBA (ARS, 50 μM; NBA, 200 μM). The data was obtained in 1/15 M PBS buffer (pH 7.30) solution at 25 °C.

Figure S2. Color images for ARS (50 μM), ARS-PBA (ARS, 50 μM; PBA, 200 μM), ARS-BBA (ARS, 50 μM; BBA, 200 μM) and ARS-NBA (ARS, 50 μM; NBA, 200 μM). The pictures were taken in 1/15 M PBS buffer (pH 7.30) at 25 °C.
Supporting information

Figure S3. (a) Fluorescence spectra ($\lambda_{ex} = 460$ nm) and (b) Absorption spectra for ARS only (50 μM), ARS-PBA (ARS, 50 μM; PBA, 200 μM), ARS-BBA (ARS, 50 μM; BBA, 200 μM). The complexes were formed in situ. The data was obtained in 52.1% MeOH/H$_2$O PBS buffer (pH 8.10) at 25 °C.

Figure S4. Color images for ARS-NBA (ARS, 50 μM; NBA, 200 μM), ARS-BBA (ARS, 50 μM; BBA, 200 μM), ARS-PBA (ARS, 50 μM; PBA, 200 μM), ARS (50 μM). The pictures were taken in 52.1% MeOH/H$_2$O PBS buffer (pH 8.10) at 25 °C.
Figure S5. (a) UV-Vis absorption titration spectra of ARS (50 μM) and addition of various concentrations of NBA (0 – 200 μM). (b) Curve fitting and binding constant calculation between ARS and NBA. The data were taken in 52.1% MeOH/H$_2$O PBS buffer (pH 8.10) at 25°C.

Binding constant calculation:

$$Y = \frac{(1 + k_Y X)}{(1 + kX)}$$ \hspace{1cm} \text{Equation 1}

By fitting the relationship curve between absorption intensity and concentration of NBA using equation 1, we resulted:

$$k = 7200 \pm 92 \text{ M}^{-1}$$

$$Y_{\text{lim}} = 0.37 \pm 0.04$$

Figure S6. 1H NMR for (a) NBA (10 mM); (b) in the presence of ARS (10 mM); (c) drop addition of NaOH (10 N) in MeOD/D$_2$O = 1:4.
By using the UV-Vis data, we calculated the LOD (3σ/k), where σ = \[\Sigma(y - y')^2/(n - 2)\]/2; k = slope of the linearity curve obtained by regression analysis; n = number of points; y = experimental response; y' = calculated response; By using the UV-Vis data, we calculated the LOD (3σ/k) = 5.4 µM.
Figure S9. Time dependent response for probe ARS-NBA (ARS, 50 µM; NBA, 200 µM) complex (a) UV-Vis Absorption at $\lambda_{\text{max}} = 500$ nm and (b) Fluorescence ratio change F/F_0 at $\lambda_{\text{max}} = 550$ nm in the presence of peroxynitrite (0.5 mM). The data were recorded in 52.1% MeOH/H$_2$O PBS buffer (pH 8.10) at 25°C.

Figure S10. Reaction rate constant calculation between fluorescence intensity $\ln(F/F_0)$ and time (0 – 500 seconds) for probe ARS-NBA (ARS, 50 µM; NBA, 200 µM) complex in the presence of peroxynitrite (0.5 mM). The reaction rate constant can be obtained through processing the data following a simple 1st order rate equation;

$$F/F_0 = \exp(-kt')$$

We observed that a good linear relationship formed between $\ln(F/F_0)$ and time (0 – 500 seconds), hence,

It is calculated the $k' = 4.39 \text{ s}^{-1}$ from the slope.

Considering rate $= k \cdot [A][B]$ where $A =$ concentration of ARS-NBA (50 µM), and $B =$ concentration of ONOO (500 µM), $[B] >>$
Therefore, rate = $k' [A]$, where $k' = k_2 [B]$. We obtained $k_2 = 4.39 \text{s}^{-1}/0.5 \text{mM} = 8.78 \times 10^3 \text{s}^{-1} \text{M}^{-1}$.
mM), hypochlorite (0.5 mM) and peroxynitrite (0.5 mM). The data was obtained in 52.1% MeOH/H2O PBS buffer (pH 8.10) at 25 °C.

Figure S13. (a) Absorption and (b) Fluorescence response of ARS (50 μM) complex towards H2O2 (0.1 mM), hypochlorite (0.1 mM), ONOO⁻ (0.1 mM) for 60 min. The data was obtained in 52.1% MeOH/H2O PBS buffer (pH 8.10) at 25 °C.

Figure S14. Selectivity test of probe ARS-NBA (ARS, 50 μM; NBA, 200 μM) complex towards various ROS/RNS species. (a) column of UV-Vis absorption intensity A500nm/A465nm; (b) Column of fluorescence intensity (F – F0)/F0 at 550 nm in the presence of blank (1), H2O2 (2, 0.5 mM), NO (3, 0.5 mM), O2⁻ (4, 0.5 mM), AAPH (5, 0.5 mM), O2 (6, 0.5 mM), ONOO⁻ (7, 0.5 mM) for 60 min. The data...
was obtained in 52.1% MeOH/H₂O PBS buffer (pH 8.10) at 25 °C.

2. Notes and references

3. NMR spectra
Nuclear magnetic resonance (NMR) spectra were obtained in methanol-D. Where a Bruker AVANCE 300 was used, ¹H spectra were recorded at 300 MHz, ¹³B spectra at 96 MHz and ¹³C at 75 MHz. Chemical shifts (δ) are expressed in parts per million and are reported relative to the residual solvent peak as an internal standard in ¹H and ¹³C spectra. The multiplicities and general assignments of the spectroscopic data are denoted as: singlet (s), doublet (d), unresolved multiplet (m), and broad (br).

![NMR spectrum](image)

Figure S15. ¹H NMR of compound BBA in MeOD.
Supporting information

Figure S16. 13C NMR of compound BBA in MeOD.

Figure S17. 11B NMR of compound BBA in MeOD.