Supporting Information

Mechanical Properties of Block Copolymer Vesicle Membranes by Atomic Force Microscopy

Qi Chen, Holger Schönher, G. Julius Vancso*

Department of Materials Science and Technology of Polymers, University of Twente, MESA+ Institute for Nanotechnology, Postbus 217, 7500 AE Enschede, The Netherlands

Figure S1. Histograms of the observed radii of the spherical caps for (a) PS_{115}-b-PAA_{15}; (b) PS_{139}-b-PAA_{17}; (c) PS_{182}-b-PAA_{19} and (d) PS_{403}-b-PAA_{62}.
Figure S2. Histograms of the calculated apparent Young’s moduli of the membranes for (a) PS115-b-PAA15; (b) PS139-b-PAA17; (c) PS182-b-PAA19 and (d) PS403-b-PAA62.
Figure S3. Histogram of the spring constants of the membranes for (a) PS₁₁₅-b-PAA₁₅; (b) PS₁₃₉-b-PAA₁₇; (c) PS₁₈₂-b-PAA₁₉ and (d) PS₄₀₃-b-PAA₆₂.
Figure S4. Apparent Young’s moduli of various PS-b-PAA membranes vs. radius of the spherical caps.

Figure S5. TM-AFM image showing a few buckled vesicles after the indentation test.