Supporting Information

Target-Selective Vesicle Fusion System with pH-Selectivity and Responsiveness

Ayumi Kashiwada,*Mana Tsuboi,a Toshihisa Mizuno,b Takeshi Nagasaki,c and Kiyomi Matsudaa

a Department of Applied Molecular Chemistry College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan.

b Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.

c Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 588-8585, Japan.

E-mail: kashiwada.ayumi@nihon-u.ac.jp

Contents:

· Synthesis of Compound III as the raw material for Compound 1

· Spectral data of Compound 1

· Supporting figures
Synthesis of Compound III as the raw material for Compound 1

2-Methylphenylboronic acid neopentylglycol ester (I)

2-Methylphenylboronic acid (2.72 g, 20.0 mmol) and 2,2-dimethyl-1,3-propanediol (2.50 g, 24.0 mmol) were dissolved in toluene (50 cm3) in a 100 cm3 oven dried round bottom flask. To this solution, p-toluenesulfonic acid (catalytic amount) was added. The round bottom flask was connected to a Dean Stark apparatus under reflux condition to remove the water. The progress of the reaction was monitored by TLC (silica gel 60, hexane-ethyl acetate = 8:2 (v/v)). After 6 h when the spot of 2-methylphenylboronic acid ($R_f = 0.16$) disappeared, the reaction was finished. After cooling the reaction mixture was washed rapidly with water (50 cm3). The organic layer was separated, dried over anhydrous sodium sulfate, and concentrated to dryness. The residue being further purified through column chromatography (silica gel 60, hexane-ethyl acetate = 8:2 (v/v)) to obtain the pure title compound I as a pale yellow oil (4.03 g, 97% yield).

FAB-MS spectroscopy for MH$^+$: 205.18 (calcd. 205.08). 1H NMR (400 MHz, DMSO-d$_6$) : δ = 0.97 (s, 6H), 2.43 (s, 3H), 3.75 (s, 4H), 7.10-7.13 (br t+t, 2H), 7.26 (d, 1H), 7.60 (d, 1H).

2-Bromomethylphenylboronic acid neopentylglycol ester (II)

Compound I (4.00 g, 19.6 mmol) and N-bromosuccinimide (NBS) (3.69 g, 20.7 mmol) were dissolved in CCl$_4$ (50 cm3) in a 100 cm3 oven dried round bottom flask. To this solution,
α,α′-azobisisobutyronitrile (AIBN) (0.37 g, 10 wt% of NBS) was added. The solution was held at reflux for 3 h. The progress of the reaction was monitored by TLC (silica gel 60, hexane-ethyl acetate = 7:3 (v/v)). After cooling, insoluble materials were removed by filtration and then the filtrate was washed rapidly with water (50 cm³). The organic layer was separated, dried over anhydrous sodium sulfate, and concentrated to dryness. The residue being further purified through column chromatography (silica gel 60, hexane-ethyl acetate = 7:3 (v/v)) to obtain the pure title compound II as a brown oil (4.81 g, 86% yield from I).

FAB-MS spectroscopy for MH⁺: 286.12 (calcd. 283.98). ¹H NMR (400 MHz, DMSO-d₆): δ = 0.98 (s, 6H), 3.75 (s, 4H), 4.95 (s, 2H), 7.29 (d, 1H), 7.39-7.42 (br t+t, 2H), 7.69 (d, 1H). ²-

2-[N-Methyl-N-(p-carboxyphenyl)]aminomethylphenylboronic acid neopentylglycol ester (III)

Compound II (4.81 g, 16.9 mmol) and 4-(methylamino)benzoic acid (2.80 g, 18.5 mmol) were dissolved in N,N-dimethylformamide (20 cm³) in a 100 cm³ oven dried round bottom flask. The solution was held at reflux for 3 h in the presence of potassium carbonate (3.50 g, 25.4 mmol). After cooling, insoluble materials were removed by filtration and then the filtrate was concentrated to dryness. The residue was taken with a mixture of chloroform (20 cm³) and aqueous 5% sodium hydrogen carbonate solution (20 cm³). This heterogeneous mixture was stirred for 30 min at room temperature. The organic layer was separated, washed with water (50 cm³), dried over anhydrous sodium sulfate, and concentrated to dryness. The residue being further purified through column chromatography (silica gel 60, hexane-ethyl acetate = 7:3 (v/v)) to obtain the pure title compound III as a brown oil (2.95 g, 49% yield from II).

FAB-MS spectroscopy for MH⁺: 354.30 (calcd. 354.23). ¹H NMR (400 MHz, DMSO-d₆): δ = 0.75 (s, 6H), 3.11 (s, 3H), 3.76 (s, 4H), 5.25 (s, 2H), 6.57 (d, 2H), 7.30-7.40 (br d+t+t, 3H), 7.60 (d, 1H), 7.74 (d, 2H) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ = 22.1, 37.7, 65.6, 67.4, 110.8, 115.8, 127.2, 128.2, 128.9, 130.9, 131.6, 137.4, 138.1, 139.0, 166.3 ppm.
1H and 13C NMR charts of **Compound III**
Spectral data of Compound 1

HPLC trace of Compound 1 (after purification)

\[\text{[mV]} \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \quad 16 \quad 18 \quad 20 \quad 22 \quad 24 \quad 26 \quad 28 \]

\[\text{Time (min)} \]

\[10.69 \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \]

\[\text{HPLC trace of Compound 1 (after purification)} \]

\[\text{Solvent A: Water (containing 0.1% TFA)} \]

\[\text{Solvent B: Acetonitrile (containing 0.1% TFA)} \]

\[\text{Linear gradient system: B: 20% (0 min) → 30% (90 min)} \]

\[\text{Flow: 1.0 mL/min} \]

\[\text{Wavelength: 254 nm} \]

\[\text{1H NMR chart of Compound 1} \]
13C NMR chart of Compound 1
Fig. S1 The lipid mixing experiment by the use of pre-incubated pilot vesicles (EggPC/DPGS/Compound 1) with 10 mM of free myo-inositol (open circle). The measurements were performed in 10 mM acetic acid/sodium acetate buffer (containing 100 mM NaCl, pH 5.0) at 30 °C.
Fig. S2 DLS size distribution profiles of target vesicles (EggPC/PI/NBD-PE/Rh-PE) before (A) and after (B) gel filtrations for inner leaflet mixing assays.

Fig. S3 Fluorescence spectra of gel filtrated target vesicles and further sodium dithionite added vesicles.