Supplementary Data for:

Dually Responsive Aqueous Gels from Thermo- and Light-Sensitive Hydrophilic ABA
Triblock Copolymers

Jeremiah W. Woodcock, Roger A. E. Wright, Xueguang Jiang, Thomas G. O'Lenick, and Bin Zhao*

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996

Figure S1. Plot of dynamic storage modulus G' (\circ), dynamic loss modulus G'' (\triangle), and $\tan\delta$ (\circ) versus temperature for a 10.0 wt % aqueous solution of PTEGEA-PEO-PEGEA (ABA-1 in Table 1) in a heating ramp. The rheological data were collected using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency of 1 Hz.
Figure S2. Frequency dependencies of dynamic storage modulus G' ($) and loss modulus G'' (\forall) of a 9.7 wt % aqueous solution of $\text{P(TEGEA-co-AA)-b-PEO-b-P(TEGEA-co-AA)}$, obtained from UV irradiation of a 10.0 wt % aqueous solution of $\text{P(TEGEA-co-NBA)-b-PEO-b-P(TEGEA-co-NBA)}$ (ABA-3) at 43 °C for 116 h, at (a) 41, (b) 48, and (c) 65 °C. A strain amplitude of 0.2 % was used in the frequency sweep experiments.
(a)

Supplementary Material (ESI) for Soft Matter
This journal is (c) The Royal Society of Chemistry 2010

(b)

(c)

(d)
Figure S3. Temperature ramps for aqueous solutions of P(TEGEA-co-NBA)-b-PEO-b-P(TEGEAA-co-NBA) (ABA-3 in Table 1) with concentrations of (a) 14.2, (b) 10.0, (c) 6.0, (d) 4.0, and (e) 3.0 wt %. The rheological data were collected at a constant frequency of 1 Hz, a strain amplitude of 0.2 %, and a heating rate of 3 °C/min. The pictures show the states of each solution at four different temperatures.

Figure S4. Temperature ramps for aqueous solutions of P(TEGEA-co-AA)-b-PEO-b-P(TEGEAA-co-AA) (obtained from UV irradiation of a 10.0 wt % aqueous solution of ABA-3) with concentrations of (a) 13.8 and (b) 7.8 wt %. The rheological data were collected at a constant frequency of 1 Hz, a strain amplitude of 0.2 %, and a heating rate of 3 °C/min. The pictures show the states of each solution at four different temperatures.
Figure S5. Phase diagram of aqueous solution of P(TEGEA-co-NBA)-b-PEO-b-P(TEGEA-co-NBA) (ABA-3). §: Sol-gel transition temperature determined by rheological measurements; #: temperature at which the gel became cloudy, determined by visual examination; #: temperature at which a clear solution turned cloudy, determined by visual examination.

Figure S6. Plot of dynamic storage modulus G' (†), dynamic loss modulus G'' (≈), and tanδ, (.) versus temperature for a 10.0 wt % aqueous solution of P(TEGEA-co-NBA)-b-PEO-b-P(TEGEA-co-NBA) (ABA-2) before (a) and after (b) the removal of o-nitrobenzyl groups. The rheological data were collected from heating ramps using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency of 1 Hz.
Figure S7. Plot of dynamic storage modulus G' (\ddagger), dynamic loss modulus G'' (\wedge), and tanδ (.) versus temperature for a 10.0 wt % aqueous solution of P(TEGEA-co-NBA)-b-PEO-b-P(TEGEA-co-NBA) (ABA-4) before (a) and after (b) the removal of o-nitrobenzyl groups. The rheological data were collected from heating ramps using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency of 1 Hz.

Figure S8. Plot of dynamic storage modulus G' (\ddagger), dynamic loss modulus G'' (\wedge), and tanδ (.) versus temperature for a 10.0 wt % aqueous solution of P(TEGEA-co-NBA)-b-PEO-b-P(TEGEA-co-NBA) (ABA-5) before (a) and after (b) the removal of o-nitrobenzyl groups. The rheological data were collected from heating ramps using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency of 1 Hz.