Side Chain Assisted Nanotubular Self-Assembly of Cyclic Peptides at the Air-Water Interface

Byeongdo Kwak,a Kwanwoo Shin,a,* Sangjun Seok,b Doseok Kim,b Farhan Ahmad,c Kurt E. Geckeler,c Oliver H. Seeck,d Young-Soo Seo,e Suahil K. Satija,f and Stefan Kubikg

a Department of Chemistry, Institute of Biological Interfaces, Sogang University Shin-soo, Mapo, Seoul 121-74, Korea. Tel: +82-2-705-8441; Fax: +82-2-701-0967; Email: kwshin@sogang.ac.kr.
b Department of Physics, Sogang University Shin-soo, Mapo, Seoul 121-74, Korea
c Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu Gwangju 500-712, Korea
d Hasylab am Desy, Notkestrasse 85, D-22603 Hamburg, Germany
e Department of Nano Science and Engineering, Sejong University, Seoul, Korea
f NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr. Gaithersburg, MD 20899, USA
g Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserlautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany.

CONTENT

BAM images of the \textbf{C8G} monolayer ...S2
SEM images of the \textbf{C6G} monolayer ...S3
PM-IRRAS spectra of the \textbf{C6G} monolayer ...S4
BAM images of the C8G monolayer at different surface pressure: The letters in the figure correspond to the stages indicated in the π-A isotherm in Figure 4.
SEM images: C6G monolayer at an area of 70 Å²/molecule transferred onto a silicon substrate.
PM-IIRRAS spectra of the C6G monolayer at the air-water interface: The spectrum was recorded at a pressure corresponding to stage g indicated in the π-A isotherm in Figure 4. Note that the normalized spectra ($\Delta S/S$) to the bare water surface at 1720 cm$^{-1}$ for ester C=O and 1670 cm$^{-1}$ for amide C=O are positive and negative respectively.