Effects of Chain Length on Oligopeptide Hydrogelation

Sivakumar Ramachandran, Marc B. Taraban, Ignacy Gryczynski, Zygmunt Gryczynski, Jill Trehella, and Yihua Bruce Yu*

Table of Contents

Figure S1. Fluorescence emission intensity and anisotropy of the EAW6:OAW6 pair ... s2

Figure S2. Tryptophan fluorescence anisotropy upon gelation of the EAW6:OAW6, EAW10:OAW10, and EAW14:OAW14 pairs .. s3

Figure S3. $I(q)$ vs q over time during the process of gelation of the EAW6:OAW6, EAW10:OAW10, and EAW14:OAW14 pairs s5
Figure S1. Tryptophan isotropic emission intensity I_{cum} (A) and tryptophan anisotropy r (B) for the EAW6:OAW6 peptide pair. (A) OAW6 solution (red dots); immediately after mixing (blue); 12 hours after mixing (cyan). (B) OAW6 solution (red dots); immediately after mixing (blue); 12 hours after mixing (cyan). No significant decrease in tryptophan’s emission intensity or anisotropy was observed even after 12 hrs of mixing at 25°C. Anisotropy did not change significantly, but there was slight increase in Rayleigh scattering at lower wavelength after mixing.
Figure S2. Tryptophan anisotropy r upon gelation of 6:6 (blue), EAW10:OAW10 (black), and EAW14:OAW14 (red) pairs at 25 °C. (A) Initial anisotropy immediately after mixing; (B) Anisotropy after the completion of the gelation. Equilibrium values after 12 hrs for EAW6:OAW6, 7 hrs for EAW10:OAW10 pair; equilibrium values for EAW14:OAW14 have been reached after 2 hrs (see also Figs. 1, 4 and 5). Rayleigh scattering was very high at lower wavelengths (below 315 nm).
Figure S3. \(I(q) \) vs \(q \) over time during the gelation process of (A) EAW6:OAW6 pair (15 min, purple; 30 min, black; 6 hours, green; 12 hours, red); (B) EAW10:OAW10 pair: (15 min, purple; 1 hour, black; 5 hours, green; 8 hours, red; 24 hours, blue); (C) EAW14:OAW14 pair (15 min, purple; 1 hour, black; 7 hours, green; 24 hours, red).