Sequence Control over Thermo-Triggered Micellization and Smart Nanogels of Copolymers Based on PEGMA and Aldehyde-Functionalized Monomer

Ke Yang, Xiangqian Wei, Fen Wu, Chaowei Cao, Junjie Deng, and Yuanli Cai*

Electronic Supplementary Information
Fig. S1 Light scattering intensity of 1.0 mg mL\(^{-1}\) (red) or 0.5 mg mL\(^{-1}\) (black) of (a) P(FPHPMA\(_{20}\)-ran-PEGMA\(_{25}\))-b-PFPHPMA\(_{6}\) and (b) P(FPHPMA\(_{26}\)-ran-PEGMA\(_{20}\))-b-PPEGMA\(_{6}\) as a function of solution temperature upon heating.
Fig. S2 Light scattering intensity of 0.5 mg mL$^{-1}$ of (a) 1,6-hexamethylene-diamine-crosslinked nanogels of P(FPHPMA$_{20}$-ran-PEGMA$_{25}$)-b-PFPHPMA$_6$ (CP=57.1 °C, T_c=67.9 °C) upon repeatedly heating up to 72 °C and cooling down to 45 °C, or (b) 1,6-hexamethylene-diamine-crosslinked nanogels of P(FPHPMA$_{26}$-ran-PEGMA$_{20}$)-b-PPEGMA$_6$ (CP=50.3 °C, T_c=65.1 °C) upon repeatedly heating up to 68 °C and cooling down to 37 °C. The solutions were controlled at pH 8.5 (black) or pH 6.5 (red).