Supplementary information for structural changes in block copolymer micelles induced by cosolvent mixtures

Elizabeth G. Kelley,‡a Thomas P. Smart,‡a Andrew J. Jackson,ab Millicent O. Sullivan,aa and Thomas H. Epps, III*a

aa Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA. Tel: +1 302 831 0215; Fax: +1 302 831 1048; E-mail: thepps@udel.edu
ab NIST Center for Neutron Research, Gaithersburg, MD 20899, USA.
‡ These authors contributed equally to this work
* Corresponding author

1. Light scattering of PB-PEO in H2O/THF mixtures

Fig. S1: Linear plots of the decay constant (Γ) versus q^2 determined by light scattering, indicative of the isotropic nature of the PB-PEO micelles (2.4 mg mL$^{-1}$) in a number of H$_2$O/THF co-solvent mixtures. Error bars represent the relative variance of Γ for each measurement.
2. Absorbance of PB homopolymer in H$_2$O/THF cosolvent mixtures

Fig. S2: Absorbance measurements for PB homopolymer ($M_n = 3.2$ kg mol$^{-1}$, 0.73 mg mL$^{-1}$), in H$_2$O/THF mixtures, taken at 600 nm. Error bars represent standard deviation of measurements from three different polymer solutions.
3. Radius of gyration of PEO homopolymer in D$_2$O/THF-d_8 cosolvent mixtures

Fig. S3: Radius of gyration (R_g) of PEO homopolymer (6 kDa) in D$_2$O/THF-d_8 co-solvent mixtures determined from SANS measurements. SANS data were fit with a Debye function to determine the R_g. Error bars represent the range in fit values of R_g with similar goodness of fits.