## **Supporting Information**

April 19, 2011

Employing Materials Assembly to Elucidate Surface Interactions of Amino Acids with Au Nanoparticles

Manish Sethi, Wing-Cheung Law, William A. Fennell, III, Paras N. Prasad, and Marc R. Knecht\*

(19 pages)



**Figure S1:** Representative TEM image of the 40K His sample used to demonstrate the method used to count and characterize the nanoparticles as independent, linear or other (non-linearly aggregated).

- 1. It shows that there are 12 nanoparticles in close proximity (< 1 nm distance apart) to each other such that 5 of them (on the right) are linear while the rest 7 of them (on the left) are non-linear (other).
- 2. Shows 3 nanoparticles in close proximity (< 1 nm distance apart) and they are linearly arranged.
- 3. Shows 3 nanoparticles in close proximity (< 1 nm distance apart) and they are nonlinearly arranged, hence "other".
- 4. Shows only 2 nanoparticles in close proximity (< 1 nm distance apart), thus they are considered as "other".
- 5. Shows non-linear aggregates, hence "other".
- 6. Shows non-linear aggregates, hence "other".
- 7. Shows nanoparticles at distances > 1 nm apart, thus they are considered as independents.

In this manner, a total of 100 particles were counted together on different TEM images to obtain the statistical data.



**Figure S2.** TEM analysis of the citrate-capped Au nanoparticles after a period of 6.00 h. Part (a) presents a TEM image, while part (b) displays the statistical analysis of the assembly state.



**Figure S3.** UV-vis analysis of the citrate-capped Au nanoparticles in the presence of Arg over the 6.00 h reaction time. For each analysis, the Arg:Au nanoparticle ratio employed was (a) 0, (b) 40K, (c) 100K, (d) 200K, (e) 400K, (f) 1000K, (g) 4000K, (h) 8000K.



**Figure S4.** (a) DLS analysis of the assembly of Au nanoparticles in the presence of Arg. Part (b) presents an expanded analysis of the 40K, 1000K, and 8000K samples.



**Figure S5.** DLS particle size distributions for the Arg-assembled materials at Arg:Au nanoparticle ratios of (a) 40K, (b) 200K, (c) 1000K, and (d) 8000K.



**Figure S6.** UV-vis analysis of the citrate-capped Au nanoparticles in the presence of Cys over the 6.00 h reaction time. For each analysis, the Cys:Au nanoparticle ratio employed was (a) 0, (b) 4K, (c) 10K, (d) 40K, (e) 100K, (f) 200K, (g) 1000K, (h) 2000K.



**Figure S7.** DLS particle size distributions for the Cys-assembled materials at Cys:Au nanoparticle ratios of (a) 4K, (b) 40K, (c) 100K, and (d) 2000K.



**Figure S8.** UV-vis analysis of the citrate-capped Au nanoparticles in the presence of His over the 6.00 h reaction time. For each analysis, the His:Au nanoparticle ratio employed was (a) 0, (b) 4K, (c) 10K, (d) 40K, (e) 100K, (f) 200K, (g) 1000K, (h) 2000K.



**Figure S9.** TEM analysis of the materials prepared at His:Au nanoparticle ratios of (a) 4K, (b) 40K, (c) 100K, and (d) 2000K. The scale bar represents 50 nm. Part (e) presents a statistical analysis of the assembly state based upon the TEM images.



**Figure S10.** DLS particle size distributions for the His-assembled materials at His:Au nanoparticle ratios of (a) 4K, (b) 40K, (c) 100K, and (d) 2000K.



**Figure S11.** DLS analysis of 4.00 mM His in the presence of 19.4 mM citrate, which represents the reaction concentration of the two species in the 2000K His sample. As is evident, a peak is visible at  $\sim$ 100 nm, suggesting that some type of aggregated structure is generated under these conditions.



**Figure S12.** UV-vis analysis of the citrate-capped Au nanoparticles in the presence of Ala over the 6.00 h reaction time. For each analysis, the Ala:Au nanoparticle ratio employed was (a) 0, (b) 4K, (c) 10K, (d) 40K, (e) 100K, (f) 200K, (g) 1000K, (h) 2000K.



**Figure S13.** TEM analysis of the materials prepared at Ala:Au nanoparticle ratios of (a) 4K, (b) 40K, (c) 100K, and (d) 2000K. The scale bar represents 50 nm. Part (e) presents a statistical analysis of the assembly state based upon the TEM images.



**Figure S14.** DLS particle size distributions for the Ala-assembled materials at Ala:Au nanoparticle ratios of (a) 4K, (b) 40K, (c) 100K, and (d) 2000K.



**Figure S15.** UV-vis analysis of the citrate-capped Au nanoparticles in the presence of Cys over the 2.00 h reaction time at 10.0 °C. For each analysis, the Cys:Au nanoparticle ratio employed was (a) 0, (b) 4K, (c) 10K, (d) 40K, (e) 100K, (f) 200K, (g) 1000K, (h) 2000K.



**Figure S16.** UV-vis analysis of the citrate-capped Au nanoparticles in the presence of Cys over the 2.00 h reaction time at 40.0 °C. For each analysis, the Cys:Au nanoparticle ratio employed was (a) 0, (b) 4K, (c) 10K, (d) 40K, (e) 100K, (f) 200K, (g) 1000K, (h) 2000K.



**Figure S17.** UV-vis analysis of the citrate-capped Au nanoparticles in the presence of Cys over the 2.00 h reaction time at 70.0 °C. For each analysis, the Cys:Au nanoparticle ratio employed was (a) 0, (b) 4K, (c) 10K, (d) 40K, (e) 100K, (f) 200K, (g) 1000K, (h) 2000K.



**Figure S18.** TEM analysis of the effects of reaction temperature on the cysteine mediated assembly of Au nanoparticles at temperatures of (a) 10.0 °C, (b) 40.0 °C, and (c) 70.0 °C at Cys:Au nanoparticle ratios of 4K, 40K, 100K, and 2000K. The graph on the right demonstrates a statistical analysis of the nanoparticle assembly state as determined from the TEM study of >100 nanoparticles.