Solvent isotope effect on the microstructure and rheology of cationic worm-like micelles near the isotropic-nematic transition

(Supplementary Information)

Carlos R. López-Barrón∗ Norman J. Wagner†

May 11, 2011

References

∗Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
†Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA E-mail: wagnernj@udel.edu
Figure S1. Equilibrium phase diagram of the CTAB/H$_2$O system obtained using birefringence and flow birefringence observations. Filled symbols, half-filled symbols, and empty symbols represent isotropic, biphasic, and birefringent samples, respectively. Shaded area between dashed lines correspond to the I-N boundary of the CTAB/D$_2$O system reported in ref. 1. Note: This diagram is equivalent to that shown in Figure 1 (in the paper) where compositions are given in mole fraction. The unit conversion is $y = w / (w + (1 - w) MW_{CTAB} / MW_{H_2O})$ where y and w are mole and weight fractions, respectively, and MW_{CTAB}=364.45 g/mol and MW_{H_2O}=18.02 g/mol.
Table S1. Giesekus model parameters determined from SAOS and steady flow experiments.

<table>
<thead>
<tr>
<th>CTAB (wt%)</th>
<th>T (°C)</th>
<th>(G_0) (Pa)</th>
<th>(\lambda) (s)</th>
<th>(\eta_\infty) (Pa-s)</th>
<th>(\alpha)</th>
<th>(\gamma_c) (s(^{-1}))</th>
<th>(\gamma_c) (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5</td>
<td>26</td>
<td>103</td>
<td>0.022</td>
<td>0.034</td>
<td>0.871</td>
<td>63</td>
<td>893</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>148</td>
<td>0.008</td>
<td>0.025</td>
<td>0.818</td>
<td>100</td>
<td>1270</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>170</td>
<td>0.005</td>
<td>0.023</td>
<td>0.692</td>
<td>251</td>
<td>1585</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>105</td>
<td>0.007</td>
<td>0.001</td>
<td>0.395</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>134</td>
<td>0.003</td>
<td>0.001</td>
<td>0.292</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>21.5</td>
<td>30</td>
<td>147</td>
<td>0.009</td>
<td>0.028</td>
<td>0.864</td>
<td>101</td>
<td>1190</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>199</td>
<td>0.003</td>
<td>0.023</td>
<td>0.803</td>
<td>398</td>
<td>2100</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>202</td>
<td>0.003</td>
<td>0.010</td>
<td>0.466</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>104</td>
<td>0.004</td>
<td>0.003</td>
<td>0.196</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>97.8</td>
<td>0.004</td>
<td>0.001</td>
<td>0.077</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>22.0</td>
<td>30</td>
<td>68.1</td>
<td>0.041</td>
<td>0.038</td>
<td>0.965</td>
<td>15.8</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>126</td>
<td>0.009</td>
<td>0.032</td>
<td>0.898</td>
<td>63.0</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>190</td>
<td>0.004</td>
<td>0.025</td>
<td>0.644</td>
<td>251</td>
<td>1570</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>159</td>
<td>0.004</td>
<td>0.016</td>
<td>0.392</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>16</td>
<td>0.010</td>
<td>0.001</td>
<td>0.013</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>22.5</td>
<td>34</td>
<td>131</td>
<td>0.010</td>
<td>0.032</td>
<td>0.895</td>
<td>57.4</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>166</td>
<td>0.006</td>
<td>0.027</td>
<td>0.871</td>
<td>158</td>
<td>1370</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>143</td>
<td>0.006</td>
<td>0.001</td>
<td>0.681</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>112</td>
<td>0.006</td>
<td>0.001</td>
<td>0.371</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>127</td>
<td>0.002</td>
<td>0.001</td>
<td>0.069</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>23.0</td>
<td>35</td>
<td>95.3</td>
<td>0.033</td>
<td>0.035</td>
<td>0.936</td>
<td>39.4</td>
<td>752</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>96.8</td>
<td>0.004</td>
<td>0.005</td>
<td>0.373</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>24.0</td>
<td>40</td>
<td>204</td>
<td>0.004</td>
<td>0.001</td>
<td>0.961</td>
<td>246</td>
<td>1620</td>
</tr>
</tbody>
</table>
Figure S2. Stress-optic plot for the 22 wt% CTAB/H$_2$O solution and for the 16.7 wt% CTAB/D$_2$O solution (after Helgeson et al.2) at 32 °C. Error bars are propagated uncertainties computed with $\delta (\Delta n' \sin 2\chi) = \sqrt{|\sin 2\chi|^2 (\delta \Delta n')^2 + |2\Delta n' \cos 2\chi|^2 (\delta \chi^2)}$.

\[
\Delta n' \sin(2\chi) \times 10^6
\]

\[
\tau_{11}, \text{Pa}
\]
Figure S3. Phase diagram of the CTAB/H$_2$O system showing the boundary between shear thinning, for which $\alpha < 0.5$ (empty symbols), and shear banding, for which $\alpha \geq 0.5$ (filled symbols). Note: This diagram is equivalent to that shown in Figure 3 (in the paper) where compositions are given in mole fraction. The unit conversion is $y = w / (w + (1 - w)MW_{\text{CTAB}} / MW_{\text{H}_2\text{O}})$ where y and w are mole and weight fractions, respectively, and $MW_{\text{CTAB}} = 364.45$ g/mol and $MW_{\text{H}_2\text{O}} = 18.02$ g/mol.
Figure S4. Dynamic frequency sweep (a and c) and steady shear rheology (b and d) for CTAB in H₂O (a and b) at 32 °C with various concentrations spanning the IÜN transition and (c and d) for a 22 wt% sample at various temperatures spanning the IÜN transition. Points represent experimental data and lines are fits to a single-element Maxwell model with high-frequency viscosity (a and c) and to the Giesekus model under viscometric conditions (b and d).
Figure S5. First normal stress difference under steady shear for 22 wt% CTAB in H₂O at 30 °C. Filled symbols represent steady shear measurements on a cone and plate geometry. Data represented by open symbols are calculated from frequency sweep data using the relation $N_1(\dot{\gamma})/\dot{\gamma}^2 = 2G'(\omega)/\omega^2$, which is valid in the viscoelastic linear regime, i.e., at $\omega = \dot{\gamma} \rightarrow 0$. Solid lines give corresponding predictions from the GD model.
Figure S6. Anisotropy coupling parameter (α) versus compositional order parameter, $w^* = w - w_N$ (Note that Helgeson et al.1 used the symbol ϕ to denote mass fraction) for all the data point depicted in Fig 3 (in the paper). Solid lines depict the master curves fit with equations 6 and 7. Dashed lines give the fit master curves for the CTAB/D$_2$O system obtained in ref. 1. Note: This diagram is equivalent to that shown in Figure 6 (in the paper) where compositions are given in mole fraction. The unit conversion is $\phi = w/(w + (1-w)\text{MW}_{\text{CTAB}}/\text{MW}_{\text{H}_2\text{O}})$ where ϕ and w are mole and weight fractions, respectively, and MW_{CTAB}=364.45 g/mol and $\text{MW}_{\text{H}_2\text{O}}$=18.02 g/mol.
Figure S7. Dimensionless dynamic phase diagram for the systems CTAB/H$_2$O (squares) and CTAB/D$_2$O (circles, data reproduced from ref. 1). Triangles depict data for the CTAB/H$_2$O system taken from ref. 3. Empty and filled symbols represent W_i values corresponding to $\dot{\gamma}_1$ and $\dot{\gamma}_2$, respectively. Note: This diagram is equivalent to that shown in Figure 7 (in the paper) where compositions are given in mole fraction. The unit conversion is $y = w/(w + (1 - w)MW_{\text{CTAB}}/MW_{\text{H}_2\text{O}})$ where y and w are mole and weight fractions, respectively, and $MW_{\text{CTAB}}=364.45$ g/mol and $MW_{\text{H}_2\text{O}}=18.02$ g/mol.