Supporting Information

Ultralight and Highly Flexible Aerogels with Long Cellulose I Nanofibers

Wenshuai Chenb, Haipeng Yua,b,*, Qing Lib, Yixing Liua,b and Jian Lia,b

a Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, China

b Material Science and Engineering College, Northeast Forestry University, China

E-mail: yuhaipeng20000@yahoo.com.cn.

Table 1 Porosity of the aerogels obtained from hydrogels with different solid content.

<table>
<thead>
<tr>
<th>Aerogels</th>
<th>aerogel-01</th>
<th>aerogel-02</th>
<th>aerogel-05</th>
<th>aerogel-08</th>
<th>aerogel-10</th>
<th>aerogel-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity (%)</td>
<td>99.91</td>
<td>99.86</td>
<td>99.69</td>
<td>99.37</td>
<td>99.17</td>
<td>98.94</td>
</tr>
</tbody>
</table>
Fig. S1 SEM image of the chemically purified cellulose fibers.
Fig. S2 TEM images of (A) hydrogel-02, (B) hydrogel-08 and (C) hydrogel-15.
Fig. S3 FT-IR spectra of (A) raw wood fibers, (B) chemically purified cellulose fibers, (C) hydrogel-01, (D) hydrogel-02, (E) hydrogel-05, (F) hydrogel-08, (G) hydrogel-10 and (H) hydrogel-15.
Fig. S4 Photograph of aerogel-02. Due to the extremely low density of the aerogel, electrostatic charge is sufficient to make the sample stick to a finger in a way seemingly defying gravity.
Fig. S5 SEM images showing that some long nanofibers with uniform width 30-150 nm were still existed in aerogel-05.
Fig. S6 SEM images showing that some long nanofibers with uniform width 30-150 nm were still existed in aerogel-08.
Fig. S7 SEM images of aerogel-08 (A, B), aerogel-10 (C, D) and aerogel-15 (E, F). (A,C,E) Low-magnification (\times1000) and (B,D,F) high-magnification (\times40000) images of the aerogels.
Fig. S8 SEM images showing large sheet-like aggregates in the aerogels obtained by freeze-drying the ~ 0.018% CNF content suspensions prepared by diluting the hydrogel-02.
Fig. S9 SEM images of the ultralong cellulose nanofibers. (A) low-magnification SEM image showing that the length of the nanofibers is exceeding 6 mm. (B to E) SEM images taken from four different segments of the ultralong cellulose nanofibers in (A), showing the uniformity in width along the entire length.