Detailed Material and Methods

a) Lipid vesicle composition

Experiments were performed with zwitterionic 1,2-dipalmitoylphosphatidylcholine (DPPC) cationic 1,2-dipalmitoyl-ethylphosphatidylcholine (EDPPC). EDPPC was used at 10%, 25% and 50% molar ratios. As for viral and raft mimicking (VRM) vesicles, cholesterol to phospholipid ratio was kept at 0.83 and phospholipid composition was the following: 6.4% DPPC, 9.6% POPC (1-palmitoyl-2-oleoyl-phosphatidylcholine), 33.1% egg-SM (sphingomyelin), 35.2% POP (1-palmitoyl-2-oleoyl-phosphatidylserine) and 15.5% POPE (1-palmitoyl-2-oleoyl-phosphatidylethanolamine), in accordance with Brugger et al. Phospholipids were purchased from Avanti Polar Lipids (Albaster, AL, USA) and cholesterol was from Sigma (St. Louis, MO, USA).

b) Partition and Quenching Experiments

Partition experiments were performed as previously described. Briefly, acrylamide was used as an aqueous soluble quencher of the Trp residues of sifuvirtide. Small aliquots of a 4 M solution of acrylamide were added to 15 µM peptide in the presence or absence of 3 mM lipid. To minimize the relative fluorophore light absorption ratios, the peptide was excited at 290 nm. Fluorescence emission was recorded in the 490-650 nm range (NBD-PE and Rh-PE maximum emission peaks) with excitation at 470 nm and presence of Triton X-100.

c) Lipid mixing / Vesicle fusion

Lipid mixing between vesicles was evaluated using a Förster Resonance Energy Transfer (FRET) approach with NBD-PE (N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoylphosphatidylethanolamine, from Invitrogen, Carlsbad, CA, USA) as donor and Rh-PE (rhodamine B 1,2-dipalmitoylphosphatidylethanolamine, also from Invitrogen) as acceptor molecule. Liposomes simultaneously labelled with 0.6% NBD-PE and 0.6% Rh-PE (molar ratio) and non-labelled liposomes were prepared by extrusion. Throughout this assay 100 µM lipid and 0-15 µM peptide were used. The samples were incubated for 10 min and fluorescence was recorded in the 490-650 nm range (NBD-PE and Rh-PE maximum emission peaks were 530 nm and 585 nm, respectively) with excitation at 470 nm (NBD-PE excitation maximum).

% Fusion Efficiency = \(\frac{R - R_0}{R_{100\%} - R} \) \hspace{1cm} (Equation 4)

In the evaluation of the lipid mixing propensity of DPPC:EDPPC vesicles in the presence of sifuvirtide, non-labelled and labelled vesicles were kept at a 3:1 molar ratio. For VRM vesicles, first we evaluated lipid mixing of 100 µM lipid vesicles (labelled and unlabelled vesicle ratio kept at 1:1) in the presence of sifuvirtide (0-15 µM). Then, DPPC:EDPPC (1:1) vesicles pre-incubated with 0-15 µM peptide were added to those samples. Total lipid concentration was kept at 100 µM and the ratio between VRM and DPPC:EDPPC membranes was 2:1.
d) Lipid mixing / Vesicle fusion

The location of sifuvirtide after presentation by DPPC:EDPPC (1:1) to VRM vesicles was performed using a FRET approach. We used the Trp residues of sifuvirtide as energy transfer donors and 1,6-diphenyl-1,3,5-hexatriene (DPH, from Invitrogen) in the VRM membranes as the acceptor molecule. The experiment was designed using the same lipid concentrations and DPPC:EDPPC (1:1) to VRM vesicle proportions used on the lipid mixing assays. Peptide concentration was 10 µM and viral-mimicking vesicles presented 0% or 2% DPH (molar ratio). Excitation was performed at 280 nm (Trp maximum excitation) and emission was recorded between 300-550 nm. Controls in the absence of peptide, of both DPPC:EDPPC (1:1) and viral-mimicking vesicles and with DPH-unlabelled vesicles were performed. DPH emission occurs on the 400-500nm range. Data was presented as normalized differential emission spectrum of sifuvirtide in the presence lipid vesicles subtracted to sifuvirtide spectrum in aqueous solution.

References