Electronic Supplementary Information

Anisotropic Liquid Penetration Arising from Cross-Sectional Wettability Gradient

Xuelin Tian1*, Juan Li2, Xian Wang1

1Xinjiang Key Laboratory of Electronic Information Materials and Devices, and 2Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China

Email: tianxl@ms.xjb.ac.cn
Figure S1 Anisotropic liquid penetration under a) high, b) moderate and c) low wettability gradient with quadratic dependence between $\theta(\phi)$ and ϕ.

![Graphs showing anisotropic liquid penetration for high, moderate, and low wettability gradients](image)

The left plots show the relationship between P_c and k, and the right plots give the relationship between anisotropic ratio (P_{c-r}/P_{c-p}) and k. A quadratic relationship between $\theta(\phi)$ and ϕ is assumed, and $\theta(\phi)$ varies within the range of $[0, \pi]$, $[\pi/6, 5\pi/6]$ and $[\pi/3, 2\pi/3]$ for a), b) and c), respectively. For a), $\theta_p(\phi) = \phi^2/\pi$, $\theta_r(\phi) = (\pi - \phi)^2/\pi$; b),
\[\theta_p(\varphi) = \pi / 6 + 2\varphi^2 / 3\pi, \quad \theta_s(\varphi) = \pi / 6 + (\pi - \varphi)^2 / 3\pi; \quad c), \quad \theta_p(\varphi) = \pi / 3 + \varphi^2 / 3\pi, \]
\[\theta_s(\varphi) = \pi / 3 + (\pi - \varphi)^2 / 3\pi. \]
Cylinder radius is assumed to be 100 µm, and water surface tension \(\gamma \) (0.0728 N/m, 20 °C) is used for calculation. It can be seen that the anisotropic ratio \((P_{c-p}/P_{c-r}) \) can be improved by either decreasing the spacing ratio or increasing the wettability gradient.