Motion Induced by Asymmetric Enzymatic Degradation of Hydrogels

Jennifer H. Hou\(^1\), Adam E. Cohen\(^1,2^*\)

\(^1\)Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
\(^2\)Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, USA

* cohen@chemistry.harvard.edu

Supplementary Material

S1. Degradation-induced motion of beads

Supplementary Movie 1: Motion of beads, gelatin, and trypsin in a gradient of trypsin concentration. The data was acquired at 12 frames per minute. The movie plays at 360x speed up. At time = 0, the right edge of the gelatin was exposed to a solution of 0.5 mg/mL trypsin in digested gelatin. Trypsin diffused into and degraded the gelatin, and beads moved up the trypsin gradient. (Top panel) Trans-illuminated image of beads. (Middle panel) Green fluorescence of gelatin labeled with AF488. (Bottom panel) Red fluorescence of trypsin labeled with AF647. Beads are 6 µm diameter, embedded in 5% gelatin.

S2. Transport of enzyme through gel

If the transport of the enzyme is purely diffusive and our sample is translationally invariant in \(y\), then the concentration profile of enzyme, \(c(x, t)\) is governed by the 1-D diffusion equation:

\[
\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2}
\]

(S1)

where \(D\) is the diffusion coefficient of enzyme through the gel. If the gel resides in a semi-infinite plane \(x \geq 0\), the solution to Eq. S1 with the initial condition \(c(x,0) = c_0 \theta(-x)\) yields the following functional form for the dimensionless mean position of the enzyme, \(\langle \bar{x}_{enz}(t) \rangle\), over a region \(x \in [0,x_f]\):

\[
\langle \bar{x}_{enz}(t) \rangle = \frac{Dt}{2x_f} \text{erf}\left(\frac{x_f}{2\sqrt{Dt}}\right) + \frac{1}{2} x_f \left(-2 \sqrt{\frac{D}{\pi}} \text{exp}\left(-\frac{x_f^2}{4Dt}\right) + x_f \text{erfc}\left(\frac{x_f}{2\sqrt{Dt}}\right)\right)
\]

(S2)

\[
\bar{x}_{enz}(t) = \frac{2}{\sqrt{\pi}} \int_0^t \text{e}^{-\frac{t'}{4Dt}} \text{d}t' + x_f \text{erfc}\left(\frac{x_f}{2\sqrt{Dt}}\right)
\]

where \(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \text{d}t\) and \(\text{erfc}(x) = 1 - \text{erf}(x)\).