Supporting Information for

Temperature-Responsive Inclusion Complex of Cationic PNIPAAM Diblock Copolymer and γ-Cyclodextrin

Giuseppe Lazzara,a,b Gerd Olofsson,a Viveka Alfredsson,a Kaizheng Zhu,c Bo Nyström,c Karin Schillén*,a

aDivision of Physical Chemistry, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
bPresent address: Department of Physical Chemistry, University of Palermo, Viale delle Scienze, IT 90128 Palermo, Italy
cDepartment of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway

Table of contents:

Chemical shifts for γ-CD protons in the presence of polymers. 2
Time-resolved SLS data for an aqueous mixture of 10 wt % γ-CD and 1 wt % PNIPAAM72. 2
Time-resolved SLS and DLS data for an aqueous mixture of 10 wt % γ-CD and 0.5 wt % PNIPAAM24-b-PAMPTMA(+9). 3
Figure 1s. Changes in the chemical shift obtained from 1H-NMR as a function of γ-CD concentration for the H[2] (○), H[3] (●), H[5] (▲), H[4] (Δ) and H[6] (♦) cyclodextrin nuclei in the presence of 1 wt % copolymer. The 1H nuclei are marked with numbers according to Chart 1.

Figure 2s. The total static light scattering intensity as a function of time for an aqueous 10 wt% γ-CD and 1 wt% PNIPAAM$_{72}$ mixture at 25 °C.
Figure 3s. a) The total light scattering intensity as a function of time for an aqueous mixture of 10 wt % γ-CD and 0.5 wt % copolymer at 25 °C. b) Distributions of the apparent hydrodynamic radii after 100 min (dotted line) and 1800 min (solid line) after the preparation of the mixed solution. c) Normalized scattering amplitude for the fast (●) and slow (○) diffusion mode as function of time for the same mixture.