Supplementary Information

ADHESION MECHANISM IN A DOPA-DEFICIENT FOOT PROTEIN
FROM GREEN MUSSELS

Dong Soo Hwang1,4,§,*, Hongbo Zeng2, §, *, Qingye Lu2,
Jacob Israelachvili3,4,*, and J. Herbert Waite4,5,*

1Ocean Science and Technology Institute, Pohang University of Science and Technology, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea

2Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4 Canada

3Department of Chemical Engineering, 4Materials Research Laboratory, and 5Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA

\textbf{Figure S1.} Adhesion energy per unit area, W_{ad}, changes between two pvfp-1 coated surfaces in 0.1 M sodium acetate, 0.25 M KNO\textsubscript{3}, pH 5.5 due to addition of 10 μM CuCl\textsubscript{2}. Each value and error bar represents the mean of duplicated (n=2) samples and its standard deviation.
Figure s2. UV-Vis spectrum of 7-hydroxyindole with 10 μM CuCl₂ in 0.1 M sodium acetate, 0.25 M KNO₃, pH 5.5. Addition of FeCl₃ also showed trends similar to CuCl₂.

Figure s3. AFM image (tapping mode) of pvfp-1 film deposited on freshly cleaved mica.

Figure s4. Hydrodynamic radius distribution of pvfp-1 in 0.1 M acetic acid (pH 3.0) depending on salt concentration by Dynamic Light Scattering (DLS)