Supporting information.

Designing dynamic surfaces for regulation of biological responses

Ji-Hun Seoad, Sachiro Kakinokibd, Yuuki Inouecd, Tetsuji Yamaokabd, Kazuhiko Ishiharacd, ad, Nobuhiko Yui*ad

a Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan. \textsuperscript{*Fax: 81-3-5280-8027; Tel: 81-3-5280-8020; E-mail: yui.org@tmd.ac.jp

b Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan. c Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

d JST-CREST, Tokyo 102-0076, Japan.

Equipment information

NMR: Bruker, Advance 500 MHz,
FT-IR: PerkinElmer, Spectrum 100
Atomic Force Microscope (AFM): Seiko Instruments, SPA300

Figure S1. Overall reaction scheme
Figure S2. 1H NMR of 1. (500MHz, CDCl3): 7.9 ppm (d, 2H, aromatic), 7.6 ppm (t, 1H, aromatic), 7.4 ppm (t, 2H, aromatic), 3.5 ppm (m, 4H, -O-CH2-CH2-O-), 3.2 ppm (q, 2H, -CH2-NH-), 2.6 ppm (m, 4H, -OC-CH2-CH2-C-), 1.9 ppm (s, 3H, -C-CH3), end functionality = 78%.

Figure S3. 1H NMR of 2. (500MHz, DMSO-d6:MeOD, 1:1)
Figure S4. AFM topological images taken in dry and water immersing states.

Figure S5. The relative amount of 2nd antibody for γ-chain binding antibody. The result of paired t-test * shows $p < 0.001$.