Electronic Supplementary Information for *Soft Matter* Manuscript:
Wormlike Core-Shell Nanoparticles Formed by Co-Assembly of Double Hydrophilic Block Polyelectrolyte with Oppositely Charged Fluorosurfactant

Miroslav Štěpánek,*a Juraj Škvarla,a Mariusz Uchman,a Karel Procházka,a Borislav Angelov,b Lubomír Kováčik,c Vasil M. Garamus,d Christos Mantzaridis,e and Stergios Pispas*e

*a Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic. Fax: +42022499752; Tel: +420221951292; E-mail: stepanek@natur.cuni.cz

b Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Square 2, 16206 Prague 6, Czech Republic

c Institute of Cellular Biology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague 2, Czech Republic

d Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, D-21502 Geesthacht, Germany

e Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece. Fax: +302107273824; Tel: +302107273794; E-mail: pispas@eie.gr
(i) Zoomed views of objects on Cryo-TEM micrographs of the PSCI-PEO/HFDPCl system at the stoichiometric ratio, $\beta = 0.71$:

![Zoomed views of objects on Cryo-TEM micrographs of the PSCI-PEO/HFDPCl system at the stoichiometric ratio, $\beta = 0.71$.](image)

Fig. S1. Zoomed views of objects on Cryo-TEM micrographs of the PSCI-PEO/HFDPCl system at the stoichiometric ratio, $\beta = 0.71$: (a) PSCI-PEO/HFDPCl wormlike micelle, (b) PSCI-PEO/HFDPCl spherical micelle and (c) HFDPCl threadlike micelle.

(ii) The model for the SAXS of PSCI-PEO/HFDPCl system at the stoichiometric ratio, $\beta = 0.71$: The scattering function, $I_{\text{PE-S}}(q)$, consists of contributions from (i) wormlike particles, described by the form factor $P_{\text{worm}}(q, L, b, R_c)$ for homogeneous semiflexible chain of the contour length L, the Kuhn length b and the cylindrical cross-section with the radius R_c, (ii) from spherical particles, treated by the simple form factor $P_{\text{sphere}}(q, R_s)$ for homogeneous spheres of the radius R_s, and (iii) from densely packed surfactant micelles in the PE-S complex, described by the structure factor $S_{\text{cor}}(q, l, \xi)$ for disordered cell-cell correlations with the characteristic distance between cells l, and the correlation length ξ. The overall scattering function is given by the expression,

$$I_{\text{PE-S}}(q) = I_1 P_{\text{worm}}(q, L, b, R_c) + I_2 P_{\text{sphere}}(q, R_s) + I_3 S_{\text{cor}}(q, l, \xi) ,$$ \hspace{1cm} (S1)

where I_1, I_2, respectively, are the forward scattering intensities for wormlike and spherical particles and I_3 is the amplitude of the correlation peak.

1. **Wormlike particles.** The scattering from wormlike particles is given by the relationship

$$P_{\text{worm}}(q, L, b, R_c) = \frac{1}{L} \int_0^L P(q, x) dx,$$

where $P(q, x)$ is the form factor of the worm-like chain with contour length L, Kuhn length b, and cylindrical cross-section with radius R_c.
\[P_{\text{wam}}(L, b, R_c, q) = P_{\text{cy1}}(R_c, q) P_{\text{chain}}(L, b, q), \quad (S2) \]

where

\[P_{\text{cy1}}(R_c, q) = \left[\frac{2 J_1(q R_c)}{q R_c} \right]^2, \quad (S3) \]

in which \(J_1(x) \) is the 1st order Bessel function, and

\[
P_{\text{chain}}(q, L, b) = \left\{ \frac{2(e^{-u} + u - 1)}{u^2} + \left[\frac{4}{15} + \frac{7}{15u} - \left(\frac{11}{15} + \frac{7}{15u} \right) e^{-u} \right] \frac{b}{L} \right\} \times \\
\times \exp \left[-\left(\frac{q b}{q_1} \right)^{p_1} \right] + \left(\frac{1}{L b q^2} + \frac{\pi}{L q} \right) \left[1 - \exp \left[-\left(\frac{q b}{q_1} \right)^{p_1} \right] \right]. \quad (S4) \]

Here \(p_1 = 4.12, q_1 = 5.53 \) and

\[
u = \frac{L b q^2}{6} \left[1 - \frac{3b}{2L} + \frac{3b^2}{2L^2} - \frac{3b^3}{4L^3} \left(1 - e^{-2L/b} \right) \right] \left[1 + \left(\frac{L}{3.12b} \right)^2 + \left(\frac{L}{8.67b} \right)^3 \right]^{0.059}. \quad (S5)\]

2. Spherical particles. Scattering from spherical particles is given by the relationship,

\[
P_{\text{sphere}}(q, R_s) = \frac{9}{q^6 R_s^6} \left[\sin(q R_s) - q R_s \cos(q R_s) \right]^2. \quad (S6) \]

3. Correlation peak. The structure factor for correlations between surfactant micelles in the PE-S complex is given by the formula, \(^2\)

\[
S_{\text{cor}}(q, l, \xi) = \frac{\xi^{-2}}{\xi^{-2} + (q - 2\pi/l)^2}. \quad (S7)\]
