Supporting Information

Chemical Environment as Control Element in the Evolution of Shapes - ‘Hexagons and Rods’ from an 11-Helical $\alpha\beta^{2,3}$-hybrid Peptide

Dhayalan Balamurugan and Kannoth M. Muraleedharan*

Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036 - INDIA

Fax: (+91)-44 2257 4202; E-mail: mkm@iitm.ac.in
<table>
<thead>
<tr>
<th>Table of Contents:</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Representative large-area SEM images</td>
<td>3-4</td>
</tr>
<tr>
<td>2. TGA/DSC and powder XRD patterns of samples prepared from 1</td>
<td>5-6</td>
</tr>
<tr>
<td>3. 1H NMR and IR spectra of microcrystalline samples from 1</td>
<td>7</td>
</tr>
</tbody>
</table>
Larger area SEM images:

Figure S1. Larger area SEM images a-d) showing the time-dependent morphology changes in the samples of 1.

Figure S2. Larger area SEM images of samples of the tetrapeptide 1 formed by the addition of its 1 mg/mL solution in ACN (200 μL) to water containing various concentrations of P123: (a) 0.001, (b) 0.01, (c) 0.05, (d) 0.1, (e) 0.5, (f) 1.0, (g) 2.0, (h) 3.0, (i) 4.0, (j) 5.0 g/L.
Figure S3. Larger area SEM images showing different morphologies of samples of 1 formed by addition of its 1 mg/mL solution in THF (200 µL) to water containing various concentrations of P123: (a) 1.0, (b) 2.0, (c) 3.0, (d) 5.0 g/L.

Figure S4. Figures showing the morphology control on sequential use of organic co-solvents during the initiation and propagation phases of aggregation. a) 100 µL of a 2 mg/mL solution of 1 in ACN was added to 0.1 g/L P123-water (1 mL), and after stirring for 1 min, 100 µL of THF was added; b) 100 µL of a 2 mg/mL solution of 1 in THF was added to 0.1 g/L P123-water (1 mL) and after stirring for 1 min, 100 µL of ACN was added; c) 200 µL of a 1 mg/mL solution of 1 in 1:1 ACN-THF mixture was added to 0.1 g/L P123-water (1 mL).
Figure S5. Thermogravimetric analysis (TGA) of aggregates formed from 1 under various conditions.

Figure S6. a) DSC profile of the raw powder; b) Powder XRD patterns of the raw powder and single crystal (simulated from single crystal X-ray data).
Figure S7. Detailed DSC analysis of the sample (edge distorted hexagons) from peptide 1 prepared under ACN-0.01g/L P123-water, to see the reversibility of phase transitions. The experiment was conducted in two runs. The First heating was carried out from RT to 180°C which gave sharp endothermic peak at 169°C. The sample was then cooled to RT (First cooling). The absence of exothermic peak showed that the phase change at 169°C is irreversible. During the Second heating cycle we did not see the endothermic peak at 169°C as expected, but the peak at 195°C corresponding to melting point of the crystalline sample was present. Cooling of this sample (Second cooling) back to the RT did not involve any exothermic heat change at 195°C, indicating that the melting is accompanied by decomposition.

Figure S8. Development of hexagons from dendritic aggregates. Samples prepared under ACN-0.01g/LP123-water (Immediately after addition of ACN solution of peptide 1, an aliquot was withdrawn from the stirring mixture and analysed through SEM)
Figure S9. Comparison of the 1H NMR (400 MHz, CDCl$_3$) spectrum of authentic sample of 1 (a) with that of the samples prepared under 5g/L P123-THF (b), 1 g/L P123-ACN (c) and P123 alone (d); signals corresponding to traces of P123 can be seen in the spectra of microcrystalline aggregates.

Figure S10. Comparison of the FT-IR spectrum of the authentic sample of 1 with that of its microcrystalline aggregates.