Self-Assembly of PS-\textit{b}-P4VP Block Copolymers of Varying Architectures in Aerosol Nanospheres

Antti Rahikkala, Antti J. Soininen, Janne Ruokolainen, Raffaele Mezzenga, Janne Raula* and Esko I. Kauppinen

a) Aalto University School of Science, Department of Applied Physics, P.O. Box 15100, 00076 Aalto, Finland
b) ETH Zurich, Food & Soft Materials, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland

*) Corresponding author

janne.raula@aalto.fi
Rahikkala et al.

Supporting information

1. The inner structure width distributions of PS(33k)-b-P4VP(8k), PS(48k)-b-P4VP(21k), and PS(20k)-b-P4VP(19k)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>50 °C</th>
<th>150 °C</th>
<th>250 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMF-CHCl₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHCl₃</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S1. Diameter distributions of P4VP worm-like domains in PS(33k)-b-P4VP(8k) nanospheres obtained at different temperatures and from different solvents. The sample size is given by N, µ is the mean inner structure diameter, and σ is the standard deviation of the mean.
Figure S2. Diameter distributions of P4VP worm-like cylinder domains in PS(48k)-b-P4VP(21k) nanospheres obtained at different temperatures and from different solvents. The sample size is given by N, μ is the mean inner structure diameter, and σ is the standard deviation of the mean.
Figure S3. Width distributions of P4VP lamellar domains in PS(20k)-b-P4VP(19k) nanospheres obtained at different temperatures and from different solvents. The sample size is given by N, μ is the mean inner structure diameter, and σ is the standard deviation of the mean.