Supporting Information for Chemical-Gradient Directed Self-Assembly of Hydrogel Fibers

Iwona Ziemeckaa, Ger J. M. Kopera, Alexandre G. L. Olivea, Jan H. van Escha

Delft University of Technology, Department of Chemical Engineering, Julianalaan 136, 2628 BL Delft, The Netherlands Fax: +31 (0)15 278 4289; Tel: +31 (0)15 278 2682; E-mail: j.h.vanesch @ tudelft.nl

Fig 1S: Structure of low-molecular-weight hydrogelator molecule based on 1,3,5-cyclohexyltricarboxamide, 1.

Fig 2S: A sample of aligned fibers of hydrogelator 1 a) bright field b) birefringence mode; scale bar 200µm.

Fig 3S: DBC gel a) bright field b) birefringence mode; scale bar 500 µm.
Fig 4S Gelation of a DBC solution with addition of pH indicator in quartz cell shows
a) high pH gradient during gelation process
b) pH gradient visualized with pH indicator color scale for pH indicator used in the
picture 1c) d) different gelation time dependent on HCl concentration d) color
scale for pH indicator used in the picture 1e).

Fig. 5S: Texture Direction Index as a function of the distance from the inlet at different time.

Movie shows: growth of aligned fibers of DBC (bright field mode), sample of aligned fibers of DBC (birefringence mode, rotating table) and growth of aligned fibers of 1.