Supporting Information for

Effect of structural constraint on dynamic self-assembly behavior of PNIPAM-based nonlinear multihydrophilic block copolymers

Shengtong Suna, Peiyi Wu*a, Weidong Zhangb*, Wei Zhangc*, and Xiulin Zhuc

aNational Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China. E-mail: peiyiwu@fudan.edu.cn

bCenter for Soft Condensed Matter and Interdisciplinary Research, Soochow University, Suzhou 215006, China. E-mail: weidongzhang5754@163.com

cJiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. E-mail: weizhang@suda.edu.cn

Fig. S1 Temperature-dependent turbidity curves of the aqueous solutions of PNIPAM and MHBCs (0.5 mg/mL). The left figure for MHBC is reproduced from ref. 36 in the article.
Fig. S2 Micro-DSC heating curves of (PNIPAM-b-PAA)$_2$-(PVP)$_2$ in H$_2$O at different concentrations and scanning rates.

Fig. S3 Normalized temperature-variable 1H NMR spectra of linear PNIPAM in D$_2$O (10 wt%) from 25 to 40 °C with an increment of 1 °C.