Electronic Supplementary Information

Self-assembled peptides on polymer surfaces: towards morphology-dependent surface functionalization

Takaaki Date, Toshiki Sawada and Takeshi Serizawa*

Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. Fax: +81-3-5734-2128; Tel: +81-3-5734-2128; E-mail: serizawa@polymer.titech.ac.jp **Materials.** PEI (Ultem $1000^{\text{®}}$, $M_n = 12\ 000$, $M_w/M_n = 2.5$, GE Plastic) was kindly provided by Fuji Electric Systems. PEI films were prepared by spin-coating (2000 rpm, 1 min) from a chloroform solution (1.7 mg ml⁻¹) onto the substrates. The obtained films were immediately used for the following experiments. BSA, streptavidin (SAv), and avidin (Av) were purchased from Sigma-Aldrich, Thermo Fisher Scientific, and Nacalai Tesque, respectively. They were dissolved in HBS-N (10 mM HEPES buffer containing 150 mM NaCl, pH 7.4, GE Healthcare) solution, and the solutions were stored at -20 °C until use. The peptides were synthesized by conventional solid-phase methods using the 9-fluorenylmethyloxycarbonyl (Fmoc) strategy, following our previous study¹. The amounts of peptide immobilized on the PEI surfaces for AFM, ATR-IR, static contact angle, and ζ -potential measurements were adjusted by the peptide concentration and immobilization time, based on a binding analysis of the peptides on the PEI surfaces by SPR measurements.

SPR measurements. A Biacore X instrument (GE Healthcare) was used for the SPR analyses, following our previous study¹. PEI films were prepared onto gold-coated glass slides (SIA Kit Au, GE Healthcare), and set on the SPR apparatus. HBS-N (10 mM HEPES buffer containing 150 mM NaCl, pH 7.4, GE Healthcare) was flowed at a rate of 20 μ L min⁻¹ at 25 °C during the experiment. After more than 3 h of HBS-N flow, freshly prepared peptide solutions were applied to the PEI films for 180 sec (association), and then the peptide solutions were exchanged to a peptide-free buffer for 900 sec (dissociation). The resulting sensorgrams at 4 concentrations were analyzed by global fitting using BIA evaluation software version 4.1. For the protein adsorption experiments, the peptides were immobilized onto the PEI films, and then after 5 min of HBS-N flow, the protein solution (1 μ M in HBS-N) was applied for 5 min at a flow rate of 5 μ L min⁻¹ at 25 °C.

AFM measurements. The surface morphologies were visualized by non-contact mode AFM (SPM-9600, Shimadzu) in air using a silicon cantilever (PointProbe, NCH, resonance frequency 320 kHz, force constant 42 N m⁻¹, NanoWorld). All AFM images were flattened using software supplied by Shimadzu without further image processing.

ATR-IR absorption spectroscopy. The ATR-IR spectra of p1-EK immobilized onto PEI films were obtained using the refractive surface of gold-coated glass slides (SIA Kit Au, GE Healthcare) with a Spectrum One apparatus (Perkin-Elmer) in air at ambient temperature. The interferograms were co-added 50 times, and were Fourier transformed at a resolution of 4 cm⁻¹.

CD spectroscopy. The CD spectra were recorded on a CD spectropolarimeter (J-725, Jasco). The peptides were dissolved in 10 mM phosphate buffer (pH 7.4) to a concentration of 10 μ M. The spectra were recorded in a 1 mm quartz cell over 190-240 nm with buffer baseline subtraction. Ten scans were averaged using a 1 nm band width at a scanning rate of 20 nm min⁻¹.

Static contact angle measurements. The static contact angle of PEI films (~10 nm thick) on Si wafers was measured in HBS-N with a commercial apparatus (CA-X, Kyowa Interface Science), following our previous paper¹. After the PEI films were conditioned in water, 3 μ L of sessile air bubbles were attached to the underside of the PEI films in water using a microsyringe. A monitor captured the bubble shapes, and the contact angles were calculated. The contact angles were measured 4 times at different locations.

Z-potential measurements. The ζ -potential of the PEI films was measured by an electrokinetic analyzer (SurPASS, Anton Paar) equipped with an adjustable gap cell (20 mm × 10 mm) based on the streaming potential method. PEI films with an area of 20 × 10 mm² prepared on polyimide films were placed in the measuring cell. The films were separated by a spacer that formed a streaming channel. The streaming potential was then detected by Ag/AgCl electrodes. A background electrolyte of 1 mM KCl solution was used, and the pH was adjusted with 0.1 M HCl and 0.1 M KOH.

References

1. T. Date, J. Sekine, H. Matsuno and T. Serizawa, ACS Appl. Mater. Interfaces, 2011, 3, 351.

Fig. S1. SPR sensorgrams for the binding of (a) p1-EK and (b) EK to the PEI surface at four concentrations. The \blacktriangle and \blacktriangledown indicate the points at which the injection of the peptide solution started and ended, respectively.

Fig. S2. AFM height images of (a) the bare PEI surface, the peptide-immobilized PEI surfaces with a peptide amount of (b) 200, (c) 400, and (d) 500 pmol cm⁻².

Fig. S3. CD spectra of p1-EK, p1, and the EK sequence in their aqueous solutions. The negative peaks at 190-200 nm indicate that all peptides have random coil conformations.

Fig. S4. The static contact angles of air bubbles for the PEI surfaces against the amounts of immobilized p1-EK.

Fig. S5. ζ -potentials of (a) the bare PEI surface, the peptide-immobilized PEI surfaces with a peptide amount of (b) 200, (c) 400, and (d) 500 pmol cm⁻².

Fig. S6. Profiles of the adsorption amounts of SAv and Av on p1-EK-immobilized PEI surfaces against the amount of peptide immobilized peptides.