Supplementary material

for

Adsorption and Micellization Behaviors of Gemini Surfactants with Pyrrolidinium Head Groups: Effect of the Spacer Length

Bo Cai, Jinfeng Dong, Li Cheng, Zan Jiang, Yi Yang, Xuefeng Li*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072,

PR China.

*Corresponding author Email: lixf_whu@163.com
Scheme S1. The synthesis route of the Gemini surfactant C₁₂₋₃₋₁₂PB.

Scheme S1 shows the procedure for the synthesis of cationic Gemini surfactants with pyrrolidinium head groups, C₁₂₋₃₋₁₂PB. 1-Bromodecane (0.1 mol) was firstly added to acetonitrile (50 ml) solution of pyrrolidine (0.12 mol) at room temperature at stirring. After that, sodium hydroxide and catalytic amount of potassium iodide was added to the above solution. The reaction mixture was stirred at reflux temperature for 48 hours. After the reaction finished, the solvent was removed by spinning evaporation. The residue was purified by flash column chromatography (silica, 1:3 EA/CH₂Cl₂, 0.5% NH₃·H₂O, Rf = 0.3), the colorless liquid products N-dodecyl pyrrolidine was obtained, yield 80%. Then, the obtained N-dodecyl pyrrolidine (0.08 mol) was dissolved in 40 ml isopropanol in a 100 mL volume flask, and 1, s - dibromo butane (0.027 mol in 20 ml isopropanol) was added gradually. The reaction mixture was stirred at reflux temperature for 48-96 hours. After removal of isopropanol, the product purified several times by recrystallized in the mixtures of ethanol/acetone (1:10). The products were characterized by employing ESI-MS (P/ACE MDQ), ¹H NMR spectra, ¹³C NMR spectra (Mercury VX-300) in CDCl₃, and Element Analysis (VarioEL III). The results prove that they are all objective products.

1, 1'-{(propane-1, 3- diyl)bis(1-dodecyl pyrrolidinium)} bromide (C₁₂₋₃₋₁₂PB)

White powder, yield: 83%. ¹H NMR (300 MHz, CDCl₃): δ = 0.88 (t, 6H, CH₃), 1.26 (m, 36H, CH₃-(CH₂)₉-CH₂-CH₂-N), 1.79 (m, 4H, CH₃-(CH₂)₉-CH₂-CH₂-N), 2.14-2.40 (m, 8H, N-CH₂-CH₂ in pyrrolidine), 2.68 (m, 2H, N-CH₂-CH₂-CH₂-N), 3.26-4.01 (m, 16H, N-CH₂). ¹³C NMR (75 MHz, CDCl₃): δ=14.36, 20.55, 22.74-22.90, 23.94, 26.68, 29.55-29.84, 32.12, 57.42, 61.21, 63.40. ESI-MS: [M-Br⁺] C₃₀H₇₂BrN₂⁺: Caled: 599.4, Found: 599.3. Elemental analysis; Caled(%): C, 61.75; H, 10.66; N, 4.11. Found: C, 60.83; H, 10.54; N, 3.97.

1, 1'-(butane-1, 4- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂₋₄₋₁₂PB).

White powder, yield: 87%. ¹H NMR (300 MHz, CDCl₃): δ = 0.88 (t, 6H, CH₃), 1.26 (m, 36H, CH₃-(CH₂)₉-CH₂-CH₂-N), 1.79 (m, 4H, CH₃-(CH₂)₉-CH₂-CH₂-N), 2.20 (m, 8H, N-CH₂-CH₂ in pyrrolidine), 2.62 (m, 4H, N-CH₂-CH₂-CH₂-CH₂-N), 3.26-4.01 (m, 16H, N-CH₂). ¹³C NMR
(75 MHz, CDCl₃): δ = 14.45, 21.28, 23.00, 23.90, 26.88, 29.47-29.91, 32.21, 60.19, 61.26, 63.40.

ESI-MS; [M-Br⁺] C₃₆H₇₉BrN₅⁺: Calcd: 613.5, Found: 613.3. Elemental analysis; Calcd(%): C, 62.23; H, 10.74; N, 4.03. Found: C, 61.07; H, 10.53; N, 3.98.

(3) 1, 1’-(hexane-1, 6- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₆-C₁₂PB).

White power, yield: 90%. ¹H NMR (300 MHz, CDCl₃): δ = 0.88 (t, 6H, CH₃), 1.26 (m, 36H, CH₃-(CH₂)₉CH₂-CH₂-N), 1.79 (m, 4H, CH₃-(CH₂)₉CH₂-N), 2.07 (m, 8H, N-CH₂CH₂ in pyrrolidine), 2.44 (m, 4H, N-CH₂CH₂CH₂CH₂CH₂-N), 3.25-4.01 (m, 16H, N-CH₂CH₂CH₂CH₂). ¹³C NMR (75 MHz, CDCl₃): δ = 14.32, 22.28, 22.84, 23.70, 25.03, 26.65, 29.43-29.75, 59.70, 60.18, 63.21. ESI-MS; [M-Br⁺] C₃₈H₇₅BrN₅⁺: Calcd: 641.5, Found: 641.4. Elemental analysis; Calcd(%): C, 63.14; H, 10.88; N, 3.88. Found: C, 62.91; H, 10.64; N, 3.73.

(4) 1, 1’-(octane-1, 8- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₈-C₁₂PB).

White power, yield: 89%. ¹H NMR (300 MHz, CDCl₃): δ = 0.88 (t, 6H, CH₃), 1.26 (m, 44H, CH₃-(CH₂)₉CH₂-CH₂-N), 1.79 (m, 4H, CH₃-(CH₂)₉CH₂-N), 2.20 (m, 8H, N-CH₂CH₂ in pyrrolidine), 2.62 (m, 4H, N-CH₂CH₂CH₂CH₂CH₂-N), 3.25-4.01 (m, 16H, N-CH₂CH₂CH₂CH₂). ¹³C NMR (75 MHz, CDCl₃): δ = 14.32, 22.25, 22.84, 23.72, 25.89, 26.36, 28.12, 29.48-29.75, 59.75, 60.31, 63.18. ESI-MS; [M-Br⁺] C₄₁H₈₂BrN₅⁺: Calcd: 669.5, Found: 669.3. Elemental analysis; Calcd(%): C, 63.98; H, 11.01; N, 3.73. Found: C, 63.54; H, 10.85; N, 3.59.

(5) 1, 1’-(decane-1, 10- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₁₀-C₁₂PB).

White power, yield: 77%. ¹H NMR (300 MHz, CDCl₃): δ = 0.88 (t, 6H, CH₃), 1.26 (m, 48H, CH₃-(CH₂)₉CH₂-CH₂-N), 1.79 (m, 4H, CH₃-(CH₂)₉CH₂-N), 2.20 (m, 8H, N-CH₂CH₂ in pyrrolidine), 2.52 (m, 4H, N-CH₂CH₂CH₂CH₂CH₂-N), 3.36-3.93 (m, 16H, N-CH₂CH₂CH₂CH₂). ¹³C NMR (75 MHz, CDCl₃): δ = 14.23, 22.12, 22.74, 23.63, 26.27, 26.49, 28.59, 28.79, 29.27-29.65, 31.95, 59.70, 59.95, 63.12. ESI-MS; [M-Br⁺] C₄₃H₈₅BrN₅⁺: Calcd: 697.6, Found: 697.4. Elemental analysis; Calcd(%): C, 64.76; H, 11.13; N, 3.60. Found: C, 64.52; H, 10.95; N, 3.48.

(6) 1, 1’-(dodecane-1, 12- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₁₂-C₁₂PB).

White power, yield: 81%. ¹H NMR (300 MHz, CDCl₃): δ = 0.88 (t, 6H, CH₃), 1.26 (m, 52H,
CH$_3$-(CH$_2$)$_9$-CH$_2$-CH$_2$-N, N-CH$_2$-CH$_2$-(CH$_2$)$_8$-CH$_2$-CH$_2$-N), 1.79(m, 4H, CH$_3$-(CH$_2$)$_9$-CH$_2$-CH$_2$-N), 2.20 (m, 8H, N-CH$_2$-CH$_2$ in pyrrolidine), 2.42 (m, 4H, N-CH$_2$-CH$_2$-(CH$_2$)$_8$-CH$_2$-CH$_2$-N), 3.39-3.94 (m, 16H, N-CH$_2$). 13C NMR (75 MHz, CDCl$_3$): δ = 14.32, 22.15, 22.84, 23.77, 26.45, 29.08-29.75, 32.04, 59.70, 59.96, 63.20. ESI-MS; [M-Br$^-$] C$_{44}$H$_{90}$BrN$_2$$^-$: Calcd: 725.6. Found: 725.5. Elemental analysis; Calcd(%): C, 65.02; H, 11.06; N, 3.47. Found: C, 65.02; H, 11.06; N, 3.29.

(7) 1, 1‘-(tetradecane-1, 14- diyl)bis(1-dodecyl pyrroloidinium) bromide (C$_{12}$-C$_{14}$-C$_{12}$PB).

White power, yield: 72%. 1H NMR (300 MHz, CDCl$_3$): δ = 0.88 (t, 6H, CH$_3$), 1.26 (m, 56H, CH$_3$-(CH$_2$)$_9$-CH$_2$-CH$_2$-N, N-CH$_2$-CH$_2$-(CH$_2$)$_8$-CH$_2$-CH$_2$-N), 1.79(m, 4H, CH$_3$-(CH$_2$)$_9$-CH$_2$-CH$_2$-N), 2.10 (m, 8H, N-CH$_2$-CH$_2$ in pyrrolidine), 2.32 (m, 4H, N-CH$_2$-CH$_2$-(CH$_2$)$_10$-CH$_2$-CH$_2$-N), 3.39-3.94 (m, 16H, N-CH$_2$). 13C NMR (75 MHz, CDCl$_3$): δ = 14.32, 22.12, 22.84, 23.71, 25.57, 29.34-29.75, 32.05, 59.68, 59.87, 63.22. ESI-MS; [M-Br$^-$] C$_{46}$H$_{96}$BrN$_2$$^-$: Calcd: 753.7. Found: 753.6. Elemental analysis; Calcd(%): C, 66.16; H, 11.35; N, 3.35. Found: C, 66.11; H, 11.08; N, 3.22.

(8) 1, 1‘-(hexadecane-1, 16- diyl)bis(1-dodecyl pyrroloidinium) bromide (C$_{12}$-C$_{16}$-C$_{12}$PB).

White power, yield: 73%. 1H NMR (300 MHz, CDCl$_3$): δ = 0.88 (t, 6H, CH$_3$), 1.26 (m, 60H, CH$_3$-(CH$_2$)$_9$-CH$_2$-CH$_2$-N, N-CH$_2$-CH$_2$-(CH$_2$)$_8$-CH$_2$-CH$_2$-N), 1.75(m, 4H, CH$_3$-(CH$_2$)$_9$-CH$_2$-CH$_2$-N), 2.10 (m, 8H, N-CH$_2$-CH$_2$ in pyrrolidine), 2.30 (m, 4H, N-CH$_2$-CH$_2$-(CH$_2$)$_12$-CH$_2$-CH$_2$-N), 3.39-3.94 (m, 16H, N-CH$_2$). 13C NMR (75 MHz, CDCl$_3$): δ = 14.30, 22.10, 22.82, 23.69, 26.53, 29.47-29.73, 32.03. ESI-MS; [M-Br$^-$] C$_{48}$H$_{98}$BrN$_2$$^-$: Calcd: 781.7. Found: 781.7. Elemental analysis; Calcd(%): C, 66.79; H, 11.44; N, 3.25. Found: C, 66.27; H, 11.22; N, 3.05.
Figure S1. The $\kappa - C$ and $\Lambda - C^{0.5}$ curves of $C_{12}-C_4-C_{12}$PB (a), $C_{12}-C_6-C_{12}$PB (b), $C_{12}-C_8-C_{12}$PB (c), $C_{12}-C_{10}-C_{12}$PB (d).
Figure S2. The κ–C curves of C$_{12}$–C$_3$–C$_{12}$PB (a), C$_{12}$–C$_4$–C$_{12}$PB (b), C$_{12}$–C$_6$–C$_{12}$PB (c), C$_{12}$–C$_8$–C$_{12}$PB (d), C$_{12}$–C$_{10}$–C$_{12}$PB (e) and C$_{12}$–C$_{12}$–C$_{12}$PB (f) at different temperature.