Supporting Information

Staged self-assembly of PAMAM dendrimers into macroscopic aggregates with a microribbon structure similar to that of amelogenin

Jiaojiao Yang, a Shuqin Cao, a Jiahui Li, a Jianyu Xin, a Xingyu Chen, a Wei Wu, a Fujian Xu, b Jianshu Li a,*

a College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China

b College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
Figure S1. Surface of G4.0-COOH PAMAM microfiber.
Figure S2. Particle size distributions of G4.0-COOH PAMAM assembly at 0 min (a), 64 min (b), 112 min (c), 136 min (d) and 360 min (e), as measured by DLS.
Figure S3. Particle size distributions of G4.0-COOH PAMAM assembly at 14 h measured by dynamic light scattering at two angles (30 °C and 90 °C).
Figure S4. The G3.0 PAMAM dendrimer self-assembled into microfibers in aqueous solution of iron ion.
Figure S5. The G4.0 PAMAM dendrimer self-assembled into similar microribbon in pH=3 (a), pH=7 (b) and pH=11 (c).
Figure S6. The G4.0 PAMAM dendrimer self-assembled into platy aggregates in aqueous solution of copper chloride. It could not form the microribbon structure.
Figure S7. The G4.0 PAMAM dendrimer self-assembled into irregular microscopic aggregates in aqueous solution of AlCl$_3$.
Figure S8. The self-assembly of G4.0 PAMAM dendrimer in the aqueous solution of CaCl₂.
Figure S9. The G4.0 PAMAM dendrimer self-assembled in aqueous solution of Fe(NO$_3$)$_3$. It could form the microribbon structure similar to that in FeCl$_3$.
Figure S10. The XRD patterns of G4 PAMAM dendrimer microribbon.