Supporting Information

for

Formation of Parallel Aligned Nano-fibrils of Donor-Acceptor Conjugated Copolymer via Controlling J-aggregates and Post Treatment

Yaozhuo Xu, Jiangang Liu, Haiyang Wang, Xinhong Yu, Rubo Xing and Yanchun Han*

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China; University of the Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.

Tel: 86-431-85262175, Fax: 86-431-85262126, Email: ychan@ciac.ac.cn
The theoretical thickness of the crystals was estimated by the Scherrer equation. The Scherrer equation can be written as:

\[D = \frac{K \lambda}{B \cos \theta} \]

(1)

D is the average thickness of grains, which was perpendicular to the crystal plane direction. K is a dimensionless shape factor with the value of 0.89. \(\lambda \) is the X-ray wavelength. B is the line broadening at half the maximum intensity (FWHM). It could be measured in the XRD profile of PDQT film in figure S1. \(\theta \) is the Bragg angle. The theoretical thickness D was about 41 nm, which was in accordance with the measured thickness of films.

Figure Captions

Figure S1

Out-plane GIXRD profile of PDQT film. The samples were cast from CF solution with the concentration of 0.1 mg/mL

Figure S2

Thermal treatment of the PDQT films at 200 °C. The samples were cast from CF solution with the same concentration of 0.1 mg/mL. The samples were heated to corresponding temperature and kept for 20 min in nitrogen, and then cooled to the room temperature at the rate of 10°C/min. The scale bar represents 5 um.
Figure S1

![Intensity vs. 2θ plot with 'pristine' label.]

Figure S2

![Image with scale bar.]

3

Figure S1

![Intensity vs. 2θ plot with 'pristine' label.]

Figure S2

![Image with scale bar.]

3

Figure S1

![Intensity vs. 2θ plot with 'pristine' label.]

Figure S2

![Image with scale bar.]

3