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I. ANALYSIS OF SLIP-BOND AND CATCH-BOND MECHANISMS OF NON-LINEAR CELL-

SUBSTRATE FRICTION

The density of engaged adhesion sites, Nb, and the mean displacement, ⟨s⟩, are in general func-

tions of the sliding speed, vF , the density of ligands on the surface, NL, and the binding/unbinding

kinetic rates of ligands to the cytoskeleton. To predict these dependencies we exploit a simple

stochastic model for the binding kinetics at the cell-matrix interface, inspired by Walcott et al. [1].

We denote by n(s, t) the number of engaged actin-ECM adhesions present in a unit area of the the

adhesion layer with displacement between s and s+ ds at time t. The rate of change in n(s, t) is

given by :
∂n(s, t)

∂ t
=−vF

∂n(s, t)
∂ s

+ kb g(s)Nub(t)NL − kub(s)n(s, t) (S1)

with the normalization condition given by
∫ ∞
−∞ n(s, t)ds = Nb(t) and Nub(t) = N −Nb(t). Here,

kb NL and kub(s) are the binding/unbinding pseudo-first-order rate constants, respectively. The

function g(s) accounts for the probability that a connection will form with non-vanishing dis-

placement, s. While thermal energy and other stochastic mechanisms are likely to broaden g(s),

in the following we shall adopt the simplest assumption possible, that g(s) is a delta function δ (s),

namely, that connections always form with zero displacement (for a more general treatment, see

e.g., [2]).

Eq. S1 provides a master equation for the density distribution, n(s, t), of actin-ECM bonds

existing with displacement s at time t. Under the assumption that new bonds always form with

zero displacement, g(s) = δ (s), one finds the following solution for n(s) at steady state:

n(s) =
N exp

[
−1
vF

∫ s
0 kub(s′)ds′

]
θ(s)

vF
kb
+

∫ ∞
0 exp

[−1
vF

∫ s
0 kub(s′)ds′

]
ds

(S2)
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FIG. S1. (a.) Normalized mean bond displacement, ⟨s⟩/s0, and (b.) density of bound integrins, Nb/N, as

function the retrograde flow speed, for three choices of the unbinding rate functions (shown in the inset):

in blue, a slip-bond behavior is examined, kub(s) = k0
ub es/s0 , in red, kub(s) = k1

ub + (k0
ub − k1

ub) e−s/s0 , a

catch bond behavior is shown, and black is for the fixed unbinding rate, kub = k0
ub. Parameters used in this

calculation, kb = k0
ub = 1.0sec−1, k1

ub = 0.2sec−1, and s0 = 0.05 µm. The value of vpol dictates the regime in

the graphs (green box) where the spreading dynamics occurs because spreading ends (v= 0) when vF = vpol .

The concave shape of ⟨s⟩ in the catch bond case (red curve) is consistent with the experimental form of the

force-velocity relation. To see this recall that f ∼ Nb⟨s⟩ and that the abscissa shown here, vF = vpol − v,

should be inverted to plot f (v) (see Fig. 4 in main text). To obtain the concave behavior of ⟨s⟩ within a

regime that is sampled during spreading, a relatively large ratio s0/vpol is needed; as a compromise we

chose vpol = 1.8 µm/min and s0 = 0.05 µm which is generally larger than one might expect.

where θ(s) is the Heaviside step function. This solution can be integrated to find the the mean

displacement, ⟨s⟩, and density of bound integrin connections, Nb, via:

⟨s⟩= 1
Nb

∫ ∞

0
s n(s)ds and Nb =

∫ ∞

0
n(s)d s (S3)

This generalizes the simpler result, ⟨s⟩ = vF/k0
ub, and Nb/N = NL/(NL + k0

ub/kb) obtained previ-

ously (Eq. 2) for the displacement-independent unbinding rate case kub(s) = k0
ub.

Motivated by experiments (see text) we studied the following two contrasting functional forms

of kub(s): (i) a slip-bond dependence (Bell’s mechanism), kub(s) = k0
ub es/s0 and, (ii) a catch-bond

dependence, kub(s) = k1
ub + (k0

ub − k1
ub) e−s/s0 , where k0

ub, k1
ub and s0 are constants; these were

compared to the previously studied case, kub(s) = k0
ub.

The integrals appearing in Eqs. S2, S3, and the one used to calculate Nb have been calculated

numerically and the results are summarized in Fig. S1; analytical solutions for both these cases
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can be found in terms of hypergeometric functions (e.g., see [3]). Panels a. and b. of Fig.S1,

respectively show the variations of ⟨s⟩ and Nb with the (normalized) pulling velocity, vF . Blue

curves correspond to the slip-bond dependence, red curves to the catch-bond dependence, and

the black lines for the constant unbinding rate case. As expected for a slip-bond mechanism (blue

curves), adhesion contacts destabilize with higher pulling velocities (vF ) hence the total number of

bound anchors, Nb, decreases. The opposite behavior is exhibited for the catch bond case; the total

number of bonds, Nb, increases with vF , up to the saturating value Nb = N kb
kb+k1

ub
. For these high vF

values, the displacement s can be so large (relative to s0) that kub(s) = k1
ub+(k0

ub−k1
ub)e−s/s0 → k1

ub

and hence Nb obtains a similar expression as in the linear theory but with the replacement of k0
ub

by k1
ub. The average displacement ⟨s⟩ shows a somewhat more complicated behavior. In both

mechanisms there is a steady increase of ⟨s⟩ with vF for low values of vF ; the increase is more

significant in the catch bond case since bonds that stay connected further get pulled when the

velocity is higher. The increase of Nb with vF thus feeds back on ⟨s⟩ and causes its dramatic

increase. This influence of Nb on the dependence of ⟨s⟩ on vF ends when Nb reaches its saturation

value. At this point ⟨s⟩ continues to grow linearly with vF but with the slope 1/k1
ub, namely as,

⟨s⟩ ∼ v f /k1
ub. Hence a second linear, force-velocity-relation is reached at high sliding velocities.

In the slip-bond mechanism case, the gradual decrease of Nb with vF competes with the general

tendency of s to grow with vF , hence the outcome is a well known non-monotonic dependence of

f ∼ Nb⟨s⟩ on vF with a maximum for some intermediate value (not shown here but see [4]). We

note that the figure displays the behavior for velocities that can be much larger than those that can

be reached physiologically since spreading ceases when vF = vpol , and hence vpol places a limit on

the possible range of vF . The green box in this figure shows a reasonable range of the normalized

velocity vF with appropriate choice of parameters.

Expanding the product Nb ⟨s⟩ to second order in powers of vF = vpol −v we obtain the following

expression for f = Ll Nbκ⟨s⟩ :

f±
ξs vpol

=
(

1− v
vpol

)
± C

vpol

s0k0
ub

(
1−

k1
ub

k0
ub

)(
1− v

vpol

)2
(S4)

where the (+) and (−) expressions are for the catch-bond and slip-bond mechanisms, respectively;

the slip-bond mechanism also implies k1
ub = 0. We also defined C = (5−2β )

(2−β ) , with β = kb
kb+k0

ub
, and

maintained the previous definition of ξs = LlNbκ/k0
ub. These expansions generalize the linear

force-velocity relation obtained previously in Eq. 5. However, while in the linear theory ξsvpol

represented the stall force fss, this isn’t so in the case at hand. Rather, the stall force is obtained
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when v = vpol − vF = 0, or when, vF = vpol . This force can be extracted from our numerical

plots by choosing a point on the x-axis such that vF = vpol , as illustrated with the green box

in Fig. S1. One may also calculate an approximate stall force from the expansion in Eq. S4,

however, our numerical calculations show that this (primarily in the catch-bond case) significantly

underestimates the marked effect that k1
ub and s0 have on the stall force. The expansion of Eq. S4

is useful, however, for gaining intuition for how the various parameters affect the force-velocity

relation. Thus, as expected, the smaller s0 the stronger the non-linear effect. For the catch-bond

case, lower k1
ub or s0 results in larger forces. In contrast, for the slip-bond mechanism, smaller

forces are expected for smaller values of s0.

To predict the dynamics observed in Fig. 4, Eq.S3 is combined with Eqs.2 and 3, and solved

numerically, since the force velocity relation predicted analytically by Eq.S3 is a highly complex

function of v.
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