Supporting Information

Dark conglomerate phases of azobenzene derived bent-core mesogens – Relations between molecular structure and mirror symmetry breaking in soft matter

[a] Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, D-06120 Halle (Saale), Germany; carsten.tschierske@chemie.uni-halle.de
[b] Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt; malaasar@sci.cu.edu.eg

Content

1. Synthesis and analytical data ... S2
2. Additional Data of compounds BrFₙ .. S5
2.1 Phase transitions and DSC data ... S5
2.2 XRD data ... S7
2.3 Mixtures with 5-CB ... S9
3. Additional data of compounds IFₙ ... S10
4. Additional data of compounds FF₁₂, ClF₁₂ and MF₁₂ S10
5. References .. S11
1. Synthesis and Analytical Data

1.1 Characterization methods

Thin layer chromatography (TLC) was performed on aluminium sheet precoated with silica gel. Analytical quality chemicals were obtained from commercial sources and used as obtained. The solvents were dried using the standard methods when required. The purity and the chemical structures of all compounds synthesized were confirmed by the spectral data. The structure characterization of the synthesized bent-core compounds is based on 1H-NMR (Varian Unity 500 and Varian Unity 400 spectrometers, in CDCl$_3$ solutions, with tetramethylsilane as internal standard). Microanalyses were performed using a Leco CHNS-932 elemental analyzer.

1.2. Synthesis of compounds BrFn and its related analogues

Scheme S1. Synthesis of the new bent-core molecules.
The synthesis of the bent-core compounds under investigation is shown in Scheme 1. The intermediates compounds 4-(4-n-alkyloxy-3-fluorophenylazo)benzoates 2 and 4-(4-n-alkyloxy-3-fluorophenylazo)benzoic acids 3 were synthesized according to the methods described before [S1]. The final bent-core compounds were prepared as follows. 2.4 mmol of the appropriate acid 3 was heated under reflux with thionyl chloride (3 mL) and a catalytic amount of N,N-dimethylformamide (DMF) for one hour. The excess of thionyl chloride was removed by distillation under reduced pressure. The acid chloride (4) was then dissolved in dry dichloromethane (DCM, 20 mL). To this solution, the 4-substituted resorcinol (1.2 mmol) previously dissolved in DCM (10 mL) was added, followed by addition of triethylamine (TEA, 2.8 mmol) and a catalytic amount of pyridine. The solution was then refluxed for 6 hours under an argon atmosphere. After cooling the reaction mixture to the room temperature, it was washed with 10% HCl (2 × 50 mL) and several times with cold water then extracted with DCM (3 × 50 mL) and finally dried over anhydrous sodium sulphate. The crude residue obtained after removal of solvent was chromatographed on silica gel using chloroform as eluent. Removal of solvent from the eluate afforded an orange material which was recrystallized twice from chloroform/ethanol mixture to give the final bent core compounds.

1.2.1. 4-Bromo-1,3-phenylene bis-[4-(4-butyloxy-3-fluorophenylazo)benzoate], BrF4:
1H-NMR (400 MHz, CDCl$_3$) δ 8.39 (d, J = 8.5 Hz, 2H, Ar-H), 8.33 (d, J = 8.5 Hz, 2H, Ar-H), 8.03-7.99 (m, 4H, Ar-H), 7.82-7.78 (m, 2H, Ar-H), 7.78 – 7.70 (m, 3H, Ar-H), 7.36 (d, J = 2.6 Hz, 1H, Ar-H), 7.16 (dd, J = 8.8, 2.6 Hz, 1H, Ar-H), 7.10 (t, J = 8.6 Hz, 2H, Ar-H), 4.15 (t, J = 6.5 Hz, 4H, -OCH$_2$CH$_2$), 1.93 – 1.82 (m, 4H, -OCH$_2$CH$_2$), 1.62 – 1.48 (m, 4H, CH$_2$), 1.01 (t, J = 7.4 Hz, 6H, CH$_3$). Elemental Analysis: Calc. for C$_{40}$H$_{35}$BrF$_2$N$_4$O$_6$ C, 61.15; H, 4.49; N, 7.13. Found C, 61.16; H, 4.47; N, 7.12 %.

1.2.2. 4-Bromo-1,3-phenylene bis-[4-(3-fluoro-4-hexyloxyphenylazo)benzoate], BrF6:
1H-NMR (500 MHz, CDCl$_3$) δ 8.37 (d, J = 8.6 Hz, 2H, Ar-H), 8.31 (d, J = 8.6 Hz, 2H, Ar-H), 8.02-7.97 (m, 4H, Ar-H), 7.83 – 7.78 (m, 2H, Ar-H), 7.75 – 7.69 (m, 3H, Ar-H), 7.34 (d, J = 2.6 Hz, 1H, Ar-H), 7.14 (dd, J = 8.7, 2.6 Hz, 1H, Ar-H), 7.08 (t, J = 8.2 Hz, 2H, Ar-H), 4.12 (t, J = 6.5 Hz, 4H, -OCH$_2$CH$_2$), 1.91 – 1.82 (m, 4H, -OCH$_2$CH$_2$), 1.55 – 1.30 (m, 12 H, CH$_2$), 0.90 (t, J = 6.9 Hz, 6H, CH$_3$). Elemental Analysis: Calc. for C$_{44}$H$_{43}$BrF$_2$N$_4$O$_6$ C, 62.78; H, 5.15; N, 6.66. Found C, 62.76; H, 5.15; N, 6.66 %.

1.2.3. 4-Bromo-1,3-phenylene bis-[4-(3-fluoro-4-octyloxyphenylazo)benzoate], BrF8:
1H-NMR (400 MHz, CDCl$_3$) δ 8.39 (d, J = 8.5 Hz, 2H, Ar-H), 8.32 (d, J = 8.5 Hz, 2H, Ar-H), 8.02-7.97 (m, 4H, Ar-H), 7.83 – 7.78 (m, 2H, Ar-H), 7.78 – 7.67 (m, 3H, Ar-H), 7.36 (d, J = 2.6 Hz, 1H, Ar-H), 7.15 (dd, J = 7.7, 3.9 Hz, 1H, Ar-H), 7.10 (t, J = 8.5 Hz, 2H, Ar-H), 4.14 (t, J = 6.6 Hz, 4H, -OCH$_2$CH$_2$), 1.97 – 1.81 (m, 4H, -OCH$_2$CH$_2$), 1.62 – 1.11 (m, 20H, CH$_2$), 0.90 (t, J = 6.6 Hz, 6H, CH$_3$). Elemental Analysis: Calc. for C$_{48}$H$_{51}$BrF$_2$N$_4$O$_6$ C, 64.21; H, 5.15; N, 6.66. Found C, 64.20; H, 5.15; N, 6.64 %.

1.2.4. 4-Bromo-1,3-phenylene bis-[4-(4-decyloxy-3-fluorophenylazo)benzoate], BrF10:
1H-NMR (400 MHz, CDCl$_3$) δ 8.39 (d, J = 8.6 Hz, 2H, Ar-H), 8.32 (d, J = 8.6 Hz, 2H, Ar-H), 8.03-7.96 (m, 4H, Ar-H), 7.86-7.81 (m, 2H, Ar-H), 7.78 – 7.67 (m, 3H, Ar-H), 7.36 (d, J = 2.6 Hz, 1H, Ar-H), 7.16 (dd, J = 8.7, 2.6 Hz, 1H, Ar-H), 7.10 (t, J = 8.6 Hz, 2H, Ar-H), 4.14 (t, J = 6.6 Hz, 4H, -OCH$_2$CH$_2$), 1.93 – 1.81 (m, 4H, -OCH$_2$CH$_2$), 1.57 – 1.19 (m, 28H, CH$_2$), 0.88 (t, J = 6.8 Hz, 6H, CH$_3$). Elemental Analysis: Calc. for C$_{52}$H$_{59}$BrF$_2$N$_4$O$_6$ C, 65.47; H, 6.23; N, 5.87. Found C, 65.47; H, 6.21; N, 5.87 %.

1.2.5. 4-Bromo-1,3-phenylene bis-[4-(4-dodecyloxy-3-fluorophenylazo)benzoate], BrF12:
1H-NMR (400 MHz, CDCl3) δ 8.39 (d, J = 8.6 Hz, 2H, Ar-H), 8.32 (d, J = 8.6 Hz, 2H, Ar-H), 8.03 – 7.96 (m, 4H, Ar-H), 7.86 – 7.81 (m, 2H, Ar-H), 7.78 – 7.70 (m, 3H, Ar-H), 7.35 (d, J = 2.6 Hz, 1H, Ar-H), 7.16 (dd, J = 8.7, 2.6 Hz, 1H, Ar-H), 7.10 (t, J = 8.6 Hz, 2H, Ar-H), 4.14 (t, J = 6.6 Hz, 4H, -OCH2CH2), 1.94 – 1.81 (m, 4H, -OCH2CH2), 1.58 – 1.20 (m, 36H, CH3), 0.88 (t, J = 6.8 Hz, 6H, CH3). Elemental Analysis: Calc. for C56H67BrF2N4O6, C, 66.59; H, 6.69; N, 5.55. Found C, 66.57; H, 6.69; N, 5.57 %.

1.2.6. 4-Bromo-1,3-phenylene bis-[4-(3-fluoro-4-tetradecyloxyphenylazo)benzoate], BrF14:
1H-NMR (400 MHz, CDCl3) δ 8.39 (d, J = 8.6 Hz, 2H, Ar-H), 8.32 (d, J = 8.6 Hz, 2H, Ar-H), 8.03 – 7.96 (m, 4H, Ar-H), 7.86 – 7.81 (m, 2H, Ar-H), 7.78 – 7.70 (m, 3H, Ar-H), 7.35 (d, J = 2.6 Hz, 1H, Ar-H), 7.16 (dd, J = 8.8, 2.6 Hz, 1H, Ar-H), 7.10 (t, J = 8.5 Hz, 2H, Ar-H), 4.14 (t, J = 6.6 Hz, 4H, -OCH2CH2), 1.93 – 1.81 (m, 4H, -OCH2CH2), 1.58 – 1.19 (m, 44H, CH3), 0.88 (t, J = 6.8 Hz, 6H, CH3). Elemental Analysis: Calc. for C60H78BrF2N4O6, C, 67.59; H, 7.09; N, 5.26. Found C, 67.58; H, 7.11; N, 5.29 %.

1.2.7. 4-Bromo-1,3-phenylene bis-[4-(3-fluoro-4-hexadecyloxyphenylazo)benzoate], BrF16:
1H-NMR (500 MHz, CDCl3) δ 8.38 (d, J = 8.6 Hz, 2H, Ar-H), 8.32 (d, J = 8.6 Hz, 2H, Ar-H), 8.02 – 7.95 (m, 4H, Ar-H), 7.85 – 7.79 (m, 2H, Ar-H), 7.77 – 7.70 (m, 3H, Ar-H), 7.35 (d, J = 2.6 Hz, 1H, Ar-H), 7.16 (dd, J = 8.7, 2.6 Hz, 1H, Ar-H), 7.10 (t, J = 8.2 Hz, 2H, Ar-H), 4.14 (t, J = 6.6 Hz, 4H, -OCH2CH2), 1.91 – 1.83 (m, 4H, -OCH2CH2), 1.56 – 1.20 (m, 52H, CH3), 0.88 (t, J = 6.9 Hz, 6H, CH3). Elemental Analysis: Calc. for C64H83BrF2N4O6, C, 68.49; H, 7.45; N, 4.99. Found C, 68.50; H, 7.44; N, 4.50 %.

1.2.8. 4-Bromo-1,3-phenylene bis-[4-(3-fluoro-4-octadecyloxyphenylazo)benzoate], BrF18:
1H-NMR (400 MHz, CDCl3) δ 8.39 (d, J = 8.8 Hz, 2H, Ar-H), 8.33 (d, J = 8.8 Hz, 2H, Ar-H), 8.03 – 7.98 (m, 4H, Ar-H), 7.85 – 7.79 (m, 2H, Ar-H), 7.78 – 7.70 (m, 3H, Ar-H), 7.35 (d, J = 2.6 Hz, 1H, Ar-H), 7.16 (dd, J = 8.8, 2.6 Hz, 1H, Ar-H), 7.10 (t, J = 8.4 Hz, 2H, Ar-H), 4.14 (t, J = 6.5 Hz, 4H, -OCH2CH2), 1.98 – 1.82 (m, 4H, -OCH2CH2), 1.62 – 1.14 (m, 60H, CH3), 0.88 (t, J = 6.8 Hz, 6H, CH3). Elemental Analysis: Calc. for C68H91BrF2N4O6, C, 69.31; H, 7.78; N, 4.75. Found C, 69.32; H, 7.78; N, 4.74 %.

1.2.9. 1,3-phenylene bis-[4-(4-dodecyl-3-fluorophenylazo)benzoate], HF12:
1H-NMR (500 MHz, CDCl3) δ 8.37 – 8.32 (m, 4H, Ar-H), 8.00 – 7.95 (m, 4H, Ar-H), 7.85 – 7.79 (m, 2H, Ar-H), 7.74 (dd, J = 11.9, 2.3 Hz, 2H, Ar-H), 7.52 (t, J = 8.2 Hz, 1H, Ar-H), 7.28 – 7.25 (m, J = 3.8 Hz, 1H, Ar-H), 7.22 (dd, J = 8.2, 2.2 Hz, 2H, Ar-H), 7.10 (t, J = 8.6 Hz, 2H, Ar-H), 4.14 (t, J = 6.6 Hz, 4H, -OCH2CH2), 1.95 – 1.82 (m, 4H, -OCH2CH2), 1.57 – 1.18 (m, 36H, CH2), 0.88 (t, J = 6.9 Hz, 6H, CH3). Elemental Analysis: Calc. for C58H60F2N4O6, C, 72.23; H, 7.36; N, 6.02. Found C, 72.30; H, 7.35; N, 6.12 %.

1.2.10. 4-Chloro-1,3-phenylene bis-[4-(4-dodecyl-3-fluorophenylazo)benzoate], ClF12:
1H-NMR (400 MHz, CDCl3) δ 8.35 (dd, J = 20.6, 8.5 Hz, 4H, Ar-H), 8.05 – 7.91 (m, J = 8.3, 5.5 Hz, 4H, Ar-H), 7.82 (d, J = 8.4 Hz, 2H, Ar-H), 7.74 (d, J = 11.9 Hz, 2H, Ar-H), 7.57 (d, J = 8.7 Hz, 1H, Ar-H), 7.35 (d, J = 2.6 Hz, 1H, Ar-H), 7.21 (dd, J = 8.7, 2.6 Hz, 1H, Ar-H), 7.10 (t, J = 8.6 Hz, 2H, Ar-H), 4.14 (t, J = 6.6 Hz, 4H, -OCH2CH2), 1.95 – 1.80 (m, 4H, -OCH2CH2), 1.63 – 1.17 (m, 36H, CH2), 0.88 (t, J = 6.7 Hz, 6H, CH3). Elemental Analysis: Calc. for C58H67ClF2N4O6, 69.66; H, 6.99; N, 5.80. Found C, 69.78; H, 6.93; N, 5.87 %.

1.2.11. 4-Methyl-1,3-phenylene bis-[4-(4-dodecyl-3-fluorophenylazo)benzoate], MF12:
1H-NMR (400 MHz, CDCl3) δ 8.42 – 8.27 (m, J = 10.6, 8.6 Hz, 4H, Ar-H), 8.04 – 7.93 (m, J = 8.3, 6.5 Hz, 4H, Ar-H), 7.82 (d, J = 8.8 Hz, 2H, Ar-H), 7.74 (dd, J = 11.9, 2.4 Hz, 2H, Ar-H), 7.36 (d, J = 8.4 Hz, 1H, Ar-H), 7.19 (d, J = 2.2 Hz, 1H, Ar-H), 7.17 – 7.03 (m, 3H, Ar-H),
4.14 (t, \(J = 6.5\) Hz, 4H, CH₂), 2.30 (s, 3H, CH₃), 1.95 – 1.80 (m, 4H, CH₂), 1.63 – 1.17 (m, 36H, CH₂), 0.88 (t, \(J = 6.7\) Hz, 6H, CH₃). Elemental Analysis: Calc. for \(\text{C}_{57}\text{H}_{70}\text{F}_{2}\text{N}_{4}\text{O}_{6}\) C, 72.43; H, 7.46; N, 5.93. Found C, 72.51; H, 7.51; N, 5.93 %.

1.2.12. 4-Fluoro-1,3-phenylene bis-[4-(4-dodecyloxy-3-fluorophenylazo)benzoate], FF12:

\[\text{1H-NMR (400 MHz, CDCl₃)} \delta 8.40 – 8.24 (m, 4H, Ar-H), 8.04 – 7.93 (m, 4H, Ar-H), 7.83 (d, \(J = 8.4\) Hz, 2H, Ar-H), 7.74 (d, \(J = 12.1\) Hz, 2H, Ar-H), 7.35 – 7.27 (m, 2H, Ar-H), 7.22 – 7.15 (m, 1H, Ar-H), 7.10 (t, \(J = 8.6\) Hz, 2H, Ar-H), 4.14 (t, \(J = 6.5\) Hz, 4H, CH₂), 1.95 – 1.78 (m, 4H, CH₂), 1.62 – 1.19 (m, 36H, CH₂), 0.88 (t, \(J = 6.7\) Hz, 6H, CH₃). Elemental Analysis: Calc. for \(\text{C}_{56}\text{H}_{67}\text{F}_{3}\text{N}_{4}\text{O}_{6}\) C, 70.86; H, 7.11; N, 5.90. Found C, 70.78; H, 6.98; N, 6.01 %.

1.2.13. 4-Iodo-1,3-phenylene bis-[4-(3-fluoro-4-hexadecyloxyphenylazo)benzoate], IF16:

\[\text{1H-NMR (400 MHz, CDCl₃)} \delta 8.40 (d, \(J = 8.5\) Hz, 2H, Ar-H), 8.33 (d, \(J = 8.5\) Hz, 2H, Ar-H), 8.09–7.89 (m, 5H, Ar-H), 7.80 (d, \(J = 8.7\) Hz, 2H, Ar-H), 7.78–7.67 (m, 2H, Ar-H), 7.33 (d, \(J = 2.6\) Hz, 1H, Ar-H), 7.10 (t, \(J = 8.0\) Hz, 2H, Ar-H), 7.04 (dd, \(J = 8.7, 2.6\) Hz, 1H, Ar-H), 4.14 (t, \(J = 6.5\) Hz, 4H, CH₂), 1.98–1.77 (m, 4H, CH₂), 1.65–1.03 (m, 52H, CH₂), 0.88 (t, \(J = 6.8\) Hz, 6H, CH₃). Elemental Analysis: Calc. for \(\text{C}_{64}\text{H}_{83}\text{F}_{2}\text{I}_{4}\text{N}_{4}\text{O}_{6}\) C, 65.74; H, 7.15; N, 4.79. Found C, 65.70; H, 7.21; N, 4.81 %.

2. Additional Data of compounds BrFₙ

2.1 Phase transitions and DSC Data

\[\text{Table S1. Phase transition temperatures (T°C), mesophase types, and transition enthalpies } [\Delta H/\text{kJ.mol}^{-1}] \text{ of compounds BrFₙ, IFₙ, HF₁₂, FF₁₂, CIF₁₂ and MF₁₂ as observed in the second heating scan (10 K min}^{-1}, \text{ peak temperatures).}\]

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Y</th>
<th>n</th>
<th>Phase transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrF₄</td>
<td>Br</td>
<td>4</td>
<td>Cr 156 [57.3] Iso</td>
</tr>
<tr>
<td>BrF₆</td>
<td>Br</td>
<td>6</td>
<td>DC 106 [27.4] Cr 126 [8.9][a] Iso</td>
</tr>
<tr>
<td>BrF₈</td>
<td>Br</td>
<td>8</td>
<td>DC 104 [23.5] Iso</td>
</tr>
<tr>
<td>BrF₁₀</td>
<td>Br</td>
<td>10</td>
<td>DC 106 [24.3] Iso</td>
</tr>
<tr>
<td>BrF₁₂</td>
<td>Br</td>
<td>12</td>
<td>DC 106 [24.8] Iso</td>
</tr>
<tr>
<td>BrF₁₄</td>
<td>Br</td>
<td>14</td>
<td>DC 106 [24.7] Iso</td>
</tr>
<tr>
<td>BrF₁₆</td>
<td>Br</td>
<td>16</td>
<td>Cr 100 [28.5] Iso</td>
</tr>
<tr>
<td>BrF₁₈</td>
<td>Br</td>
<td>18</td>
<td>Cr 102 [33.7] Iso</td>
</tr>
<tr>
<td>IF₁₆</td>
<td>I</td>
<td>16</td>
<td>Cr 111 [30.2] Iso</td>
</tr>
<tr>
<td>HF₁₂</td>
<td>H</td>
<td>12</td>
<td>Cr₁ 81 [21.2] Cr₂ 138 [40.5] Iso</td>
</tr>
<tr>
<td>FF₁₂</td>
<td>F</td>
<td>12</td>
<td>Cr 120 [62.4] Iso</td>
</tr>
<tr>
<td>CIF₁₂</td>
<td>Cl</td>
<td>12</td>
<td>Cr 115 [49.6] Iso</td>
</tr>
<tr>
<td>MF₁₂</td>
<td>CH₃</td>
<td>12</td>
<td>Cr 90 [41.4] Iso</td>
</tr>
</tbody>
</table>

[a] Partially crystallized sample.
Figure S1. DSC heating and cooling traces of compound BrF6: a) and c) first and second heating runs with 10 K min\(^{-1}\) and b) first cooling run with 10 K min\(^{-1}\).
2.2 XRD data

Figure S2. a) 2D XRD pattern of the DC phase of BrF6 at $T = 90 \, ^\circ\text{C}$, the inset shows the small angle region; b) diffraction intensity profile as a function of 2θ with the visible reflections.

<table>
<thead>
<tr>
<th>Reflex</th>
<th>$2\theta^\circ$</th>
<th>d/nm</th>
<th>d_{calc}/nm</th>
<th>$d_{\text{obs}}-d_{\text{calc}}$/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.55</td>
<td>3.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.09</td>
<td>1.74</td>
<td>1.73</td>
<td>0.01</td>
</tr>
<tr>
<td>30</td>
<td>7.50</td>
<td>1.18</td>
<td>1.15</td>
<td>0.03</td>
</tr>
<tr>
<td>w1</td>
<td>14.20</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w2</td>
<td>17.30</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S3. Diffraction intensity profile as a function of 2θ with the visible reflections of the DC phase of BrF8 at $T = 90 \, ^\circ\text{C}$, (c) diffraction intensity profile as a function of 2θ with the visible reflections.
Figure S4. a) 2D XRD pattern of the DC phase of BrF12 at $T = 90\, ^\circ\text{C}$, the inset shows the small angle region; b) diffraction intensity profile as a function of 2θ with the visible reflections.

Figure S5. a) 2D XRD pattern of the DC phase of BrF14 at $T = 90\, ^\circ\text{C}$, the inset shows the small angle region; b) diffraction intensity profile as a function of 2θ with the visible reflections.
Fig. S6. Molecular conformation used to determine the molecular length.

2.3 Mixtures with 5-CB

The investigated mixtures between the BrF\textsubscript{n} compounds and 5-CB were prepared by mixing the appropriate BrF\textsubscript{n} compounds in molar ratio 1:1 with 5-CB in DSC pans and melting them together in the isotropic liquid state with vigorous stirring followed by cooling with stirring to room temperature.

Figure S7. Textures of the 1:1 mixture of compound BrF12 and 5-CB: a-c) Chiral crystalline phase at 25 °C d-e) DC phase at 50 °C; b), e) between crossed polarizers; a) and d) after rotating one polarizer by 9° from the crossed position in clock-wise direction; c) and f) after rotating one polarizer by 9° from the crossed position in anticlock-wise direction.
3. Additional data of compounds IF\(n\)

![Figure S8.](image)

(a) 2D XRD pattern of the DC phase of IF8 at \(T = 90\) °C, the inset shows the small angle region; b) 2\(\theta\)-scan over this XRD pattern.

4. Additional data of compounds FF12, ClF12 and MF12

![Figure S9.](image)

Figure S9. DSC heating and cooling traces of compound FF12: a) second heating run with 10 K min\(^{-1}\) and b) second cooling run with 10 K min\(^{-1}\).
Figure S10. Optical textures of the SmCPA phase of compound ClF12 between crossed polarizers at $T = 94$ °C in a 6 µm ITO cell a) at 0V and b) under a DC field of +10V.

Figure S11. Switching current response curves recorded by applying a triangular wave voltage (160 Vpp, 10 Hz, 5 kΩ) to a 6 µm coated ITO cell with homogeneous PI alignment layer in the SmCaPA phase: a) ClF12 at $T = 94$ °C and c) FF12 at $T = 114$ °C.

5. **References**