Supplementary Information

Aggregation morphologies of a series of heterogemini surfactants with a hydroxyl headgroup in aqueous solution

Shengwei Liu,a Xiaowen Wang,b Liming Chen,b Linxi Hou*b and Tianhua Zhou*c

a Department of Physical Chemistry, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China

b Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

c Department of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore

Synthesis of CmOhpNCn

1. The molecular structure of CmOhpNCn is shown as follows,

![Molecular Structure]

\[\text{C}_m\text{H}_{2m+1}\text{OCH}_2\text{CHCH}_2\text{N}^+\text{C}_n\text{H}_{2n+1} \cdot \text{Br}^- \]

\[m, n = 10, 8; 10, 14; 12, 8; 12, 10; 12, 12; 12, 14; 14, 8 \text{ and } 14, 10 \]

Starting materials: Epichlorohydrin, N, N-dimethyldecylamine, n-decanol, n-dodecanol, n-tetradecanol, n-hexadecanol, hydrobromide were purchased from Sinopharm Chemical Reagent Co., Ltd (China), N, N-dimethyloctylamine N, N-dimethyldecylamine, N, N-dimethyldodecylamine, N, N-dimethyltetradecylamine were purchased from Tokyo Chemical Industry Co., Ltd (Japan). All the reagents used were of analytical grade.

2. Synthetic routes

![Synthetic Route]

3. A detailed description about the synthesis
This compound was synthesized with the method reported by Tianhua Zhou, which is briefly described as follows: N,N-dimethylalkyl amine (0.01mol, 1.0 equiv) and N,N-dimethylalkyl amine hydrobromide (0.01mol, 1.0 equiv) were added into a mixed ethanol-water solution (80:20, 60ml). The mixture was heated to 50°C under stirring, and then alkyl glycidyl ether (0.01mmol, 1.0 equiv) prepared from epichlorohydrin \(^1\,^2\) were added under vigorous agitation. After reacting for 4 hours, the mixture was cooled and the solvent was removed under reduced pressure. The product was recrystallized from ethyl acetate three times, followed by vacuum drying to give C\(\text{m}_{\text{m}}\)OhpNC\(\text{n}\) (m, n = 10, 8; 10, 14; 12, 8; 12, 10; 12, 12; 14, 14 and 14, 8 and 14, 10) as white solids. The overall yield is from 29 to 79%.

4. \(^1\)HNMR and elemental analysis of final products

C\textit{10}OhpNC\(\text{8} \ (400\text{MHz, CDCl}_{3},\text{ TMS})\): d 0.87-0.88 (t, 6H, 2CH\(3\)-CH\(2\)), 1.26-1.34 (m, 24H, CH\(2\)-(CH\(2\))\(\text{m}\)-CH\(2\)-CH\(2\)-O- and CH\(3\)-(CH\(2\))\(\text{n}\)-CH\(2\)-CH\(2\)-N'(CH\(3\))-), 1.52-1.53 (m, 2H, CH\(2\)-(CH\(2\))\(\text{m}\)-CH\(2\)-CH\(2\)-O-CH\(2\)), 1.74 (m, 2H, -CH\(2\)-CH\(2\)-N'(CH\(3\))-CH\(2\)), 3.39-3.49 (m, 10H, -CH\(2\)-N'(CH\(3\))-CH\(2\), -CH\(2\)-N'(CH\(3\))-CH\(2\)-CH(OH)- and -CH\(2\)-CH\(2\)-O-CH\(2\)-CH(OH)-), 3.51-3.60 (m, 4H, -CH\(2\)-O-CH\(2\)-CH(OH)- and -N'(CH\(3\))-CH\(2\)-CH(OH)-), and 4.48 ppm (m, 1H, -O-CH\(2\)-CH(OH)-CH\(2\)-N'(CH\(3\))-); Anal Calcd for C\(\text{m}_{\text{m}}\)H\(\text{m}\)BrNO\(\text{m}\): C, 64.90; H, 11.64; N, 2.61. Found: C, 60.66; H, 11.49; N, 2.72.

C\textit{16}OhpNC\(\text{14} \ (400\text{MHz, CDCl}_{3},\text{ TMS})\): d 0.81-0.83 (t, 6H, 2CH\(3\)-CH\(2\)), 1.18 (m, 36H, CH\(2\)-(CH\(2\))\(\text{m}\)-CH\(2\)-CH\(2\)-O- and CH\(3\)-(CH\(2\))\(\text{n}\)-CH\(2\)-CH\(2\)-N'(CH\(3\))-), 1.44-1.47 (m, 2H, CH\(2\)-(CH\(2\))\(\text{m}\)-CH\(2\)-CH\(2\)-O-CH\(2\)), 1.67 (m, 2H, -CH\(2\)-CH\(2\)-N'(CH\(3\))-CH\(2\)), 3.31-3.36 (m, 10H, -CH\(2\)-N'(CH\(3\))-CH\(2\), -CH\(2\)-N'(CH\(3\))-CH\(2\)-CH(OH)- and -CH\(2\)-CH\(2\)-O-CH\(2\)-CH(OH)-), 3.48-3.52 (m, 4H, -CH\(2\)-O-CH\(2\)-CH(OH)- and -N'(CH\(3\))-CH\(2\)-CH(OH)-), and 4.50 ppm (m, 1H, -O-CH\(2\)-CH(OH)-CH\(2\)-N'(CH\(3\))-); Caled for C\(\text{m}_{\text{m}}\)H\(\text{m}\)BrNO\(\text{m}\): C, 64.90; H, 11.64; N, 2.61. Found: C, 63.93; H, 12.08; N, 2.09.

C\textit{12}OhpNC\(\text{8} \ (400\text{MHz, CDCl}_{3},\text{ TMS})\): d 0.88 (t, 6H, 2CH\(3\)-CH\(2\)-), 1.26 (m, 28H, CH\(3\)-(CH\(2\))\(\text{m}\)-CH\(2\)-CH\(2\)-O- and CH\(3\)-(CH\(2\))-CH\(2\)-CH\(2\)-N'(CH\(3\))-), 1.52 (m, 2H, CH\(2\)-(CH\(2\))-CH\(2\)-CH\(2\)-O-CH\(2\)), 1.74 (m, 2H, -CH\(2\)-CH\(2\)-N'(CH\(3\))-CH\(2\)), 3.39-3.42 (m, 10H, -CH\(2\)-N'(CH\(3\))-CH\(2\), -CH\(2\)-N'(CH\(3\))-CH\(2\)-CH(OH)- and -CH\(2\)-CH\(2\)-O-CH\(2\)-CH(OH)-), 3.57 (m, 4H, -CH\(2\)-O-CH\(2\)-CH(OH-) and -N'(CH\(3\))-CH\(2\)-CH(OH)-), and 4.49 ppm (m, 1H, -O-CH\(2\)-CH(OH)-CH\(2\)-N'(CH\(3\))-); Caled for C\(\text{m}_{\text{m}}\)H\(\text{m}\)BrNO\(\text{m}\): C, 62.48; H, 11.33; N, 2.91. Found: C, 62.17; H, 11.52; N, 2.54.

C\textit{12}OhpNC\(\text{10} \ (400\text{MHz, CDCl}_{3},\text{ TMS})\): d 0.88 (t, 6H, 2CH\(3\)-CH\(2\)-), 1.26 (m, 32H, CH\(3\)-(CH\(2\))-CH\(2\)-CH\(2\)-O- and CH\(3\)-(CH\(2\))-CH\(2\)-CH\(2\)-N'(CH\(3\))-), 1.52 (m, 2H, CH\(2\)-(CH\(2\))-CH\(2\)-CH\(2\)-O-CH\(2\)), 1.74 (m, 2H, -CH\(2\)-CH\(2\)-N'(CH\(3\))-CH\(2\)-), 3.39-3.43 (m, 10H, -CH\(2\)-N'(CH\(3\))-CH\(2\), -CH\(2\)-N'(CH\(3\))-CH\(2\)-CH(OH)- and -CH\(2\)-CH\(2\)-O-CH\(2\)-CH(OH)-), 3.56 (m, 4H, -CH\(2\)-O-CH\(2\)-CH(OH-) and -N'(CH\(3\))-CH\(2\)-CH(OH)-), and 4.49 ppm (m, 1H, -O-CH\(2\)-CH(OH)-CH\(2\)-N'(CH\(3\))-); Caled for C\(\text{m}_{\text{m}}\)H\(\text{m}\)BrNO\(\text{m}\): C, 63.75; H, 11.49; N, 2.75. Found: C, 63.01; H, 11.38; N, 2.47.

C\textit{12}OhpNC\(\text{12} \ (400\text{MHz, CDCl}_{3},\text{ TMS})\): d 0.81 (t, 6H, 2CH\(3\)-CH\(2\)-), 1.24 (m, 36H, CH\(3\)-(CH\(2\))-CH\(2\)-CH\(2\)-O- and CH\(3\)-(CH\(2\))-CH\(2\)-CH\(2\)-N'(CH\(3\))-), 1.45 (m, 2H, CH\(3\)-(CH\(2\))-CH\(2\)-CH\(2\)-O-CH\(2\)), 1.67 (m, 2H, -CH\(2\)-CH\(2\)-N'(CH\(3\))-CH\(2\)), 3.32-3.37 (m, 10H, -CH\(2\)-N'(CH\(3\))-CH\(2\), -CH\(2\)-N'(CH\(3\))-CH\(2\)-CH(OH)- and -CH\(2\)-CH\(2\)-O-CH\(2\)-CH(OH)-), 3.51 (m, 4H, -CH\(2\)-O-CH\(2\)-CH(OH-) and -N'(CH\(3\))-CH\(2\)-CH(OH)-), and 4.41 ppm (m, 1H, -O-CH\(2\)-CH(OH)-CH\(2\)-N'(CH\(3\))-); Caled for C\(\text{m}_{\text{m}}\)H\(\text{m}\)BrNO\(\text{m}\): C, 64.90; H, 11.64; N, 2.61. Found: C, 63.86; H, 12.12; N, 2.29.
C_{12}OhpNC_{14} (400MHz, CDCl₃, TMS): d 0.82 (t, 6H, 2CH₃-CH₂-), 1.24 (m, 40H, CH₃-(CH₂)₉-CH₂-CH₂-O- and CH₃-(CH₂)₁₁-CH₂-CH₂-N⁺(CH₃)₂-), 1.46 (m, 2H, CH₃-(CH₂)₁₁-CH₂-CH₂-O-CH₂-), 1.67 (m, 2H, -CH₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.32-3.37 (m, 10H, -CH₂-N⁺(CH₃)₂-CH₂-,-CH₂-N⁺(CH₃)₂-CH₂-CH₂(CH(OH))- and -CH₂-CH₂-O-CH₂-CH₂(CH(OH))-), 3.51 (m, 4H, -CH₂-O-CH₂-CH₂(CH(OH))- and -N⁺(CH₃)₂-CH₂-CH₂(CH(OH))-), and 4.42 ppm (m, 1H, -O-CH₂-CH₂(CH(OH))-CH₂-N⁺(CH₃)₂-); Caled for C₃₁H₆₆BrNO₂: C, 65.93; H, 11.78; N, 2.48. Found: C, 63.30; H, 12.11; N, 2.32.

C_{14}OhpNC_{8} (400MHz, CDCl₃, TMS): d 0.82 (t, 6H, 2CH₃-CH₂-), 1.19-1.28 (m, 32H, CH₃-(CH₂)₁₁-CH₂-CH₂-O- and CH₃-(CH₂)₁₁-CH₂-CH₂-N⁺(CH₃)₂-), 1.44-1.47 (m, 2H, CH₃-(CH₂)₁₁-CH₂-CH₂-O-CH₂-), 1.68 (m, 2H, -CH₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.31-3.37 (m, 10H, -CH₂-N⁺(CH₃)₂-CH₂-,-CH₂-N⁺(CH₃)₂-CH₂-CH₂(CH(OH))- and -CH₂-CH₂-O-CH₂-CH₂(CH(OH))-), 3.50-3.54 (m, 4H, -CH₂-O-CH₂-CH₂(CH(OH))- and -N⁺(CH₃)₂-CH₂-CH₂(CH(OH))-), and 4.43 ppm (m, 1H, -O-CH₂-CH₂(CH(OH))-CH₂-N⁺(CH₃)₂-); Caled for C₃₂H₇₈BrNO₂: C, 63.75; H, 11.49; N, 2.75. Found: C, 63.07; H, 12.15; N, 2.59.

C_{14}OhpNC_{10} (400MHz, CDCl₃, TMS): d 0.81 (t, 6H, 2CH₃-CH₂-), 1.19-1.28 (m, 36H, CH₃-(CH₂)₁₁-CH₂-CH₂-O- and CH₃-(CH₂)₁₁-CH₂-CH₂-N⁺(CH₃)₂-), 1.44-1.47 (m, 2H, CH₃-(CH₂)₁₁-CH₂-CH₂-O-CH₂-), 1.67 (m, 2H, -CH₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.32-3.37 (m, 10H, -CH₂-N⁺(CH₃)₂-CH₂-,-CH₂-N⁺(CH₃)₂-CH₂-CH₂(CH(OH))- and -CH₂-CH₂-O-CH₂-CH₂(CH(OH))-), 3.50-3.53 (m, 4H, -CH₂-O-CH₂-CH₂(CH(OH))- and -N⁺(CH₃)₂-CH₂-CH₂(CH(OH))-), and 4.42 ppm (s, 1H, -O-CH₂-CH₂(CH(OH))-CH₂-N⁺(CH₃)₂-); Caled for C₃₄H₈₂BrNO₂: C, 64.90; H, 11.64; N, 2.61. Found: C, 63.56; H, 12.03; N, 2.28.

Measurements of CₘOhpNCₙ

1 Krafft temperature

The electric conductivities of CₘOhpNCₙ were measured by Model Delta 326 conductometer with the temperature ranging from 15 to 70 °C. The Krafft temperatures were determined by the break of conductivity vs. temperature plots.²
Fig. S1 The electric conductivities of different gemini surfactants as a function of temperature: (a) C_{10}OhpNC_8, (b) C_{10}OhpNC_{14}, (c) C_{12}OhpNC_8, (d) C_{12}OhpNC_{10}, (e) C_{12}OhpNC_{12}, (f) C_{12}OhpNC_{14}, (g) C_{14}OhpNC_8, (h) C_{14}OhpNC_{10}.

2 CMC

The electric conductivities of C_{m}OhpNC_{n} were measured by Model Delta 326 conductometer at 50°C. The CMC values were determined by the break of conductivity vs. concentration plots.
Fig. S2 The electric conductivities of different gemini surfactants as a function of concentration: (a) C$_{10}$OhpNC$_8$, (b) C$_{10}$OhpNC$_{14}$, (c) C$_{12}$OhpNC$_8$, (d) C$_{12}$OhpNC$_{16}$, (e) C$_{12}$OhpNC$_{12}$, (f) C$_{12}$OhpNC$_{14}$, (g) C$_{14}$OhpNC$_8$, (h) C$_{14}$OhpNC$_{10}$.
References
