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1.   The red blood cell (RBC) membrane model 
The membrane of the RBC consists of spectrin tetramers which are connected at actin junctional 
complexes forming a 2D six-fold symmetric triangular network anchored to the lipid bilayer. 
Spectrin is a tetramer formed by head-to-head association of two identical heterodimers. Each 
heterodimer consists of an α-chain with 22 triple-helical segments and a β-chain with 17 triple-
helical segments1,2. In the proposed model, the spectrin is represented by 39 spectrin particles 
(white particles in Fig.1) connected by unbreakable springs. Thus, the equilibrium distance 
between (diameter of ) the spectrin particles is 

max / 39r L=s-s
eq

, where Lmax is the contour length of 

the spectrin (~200 nm), and 5r ≅s-s
eq

nm. Three types of coarse-grain (CG) particles are 

introduced to represent the lipid bilayer and band-3 proteins (see Fig. 1). The blue color particles 
denote a cluster of lipid molecules. Their diameter of 5 nm is approximately equal to the 
thickness of the lipid bilayer. The black particles represent glycophorin proteins with the same 
diameter as the lipid particles. The band-3 protein consists of two domains: (i) the cytoplasmic 
domain of band-3 with a dimension of 7.5×5.5×4.5nm that contains the binding sites for the 
cytoskeletal proteins, and (ii) the membrane domain, with a dimension of 6×11×8 nm, whose 
main function is to mediate anion transport3,4. We represent the membrane domain of band-3 by 
a spherical CG particle with a radius of 5 nm. The volume of the particle is similar to the 
excluded volume of the membrane domain of a band-3. However, when band-3 proteins interact 
with the cytoskeleton, the effect of the cytoplasmic domain has to be taken into account and thus 
in this case the effective radius is considered approximately 12.5 nm. 
 
2.   Potentials implemented in the RBC membrane model   
In the applied membrane model, the spectrin particles are connected by unbreakable springs. The 
employed spring potential  2

0( ) ( - ) / 2u r k r r=s-s s-s
cy eq

 is plotted as the green curve in Fig. S1 with 

the equilibrium distance between the spectrin particles to be 5r ≅s-s
eq

nm. The two ends of the 

spectrin chains are connected to the actin junctional complexes via the spring potential
2

0( ) ( - ) / 2u r k r r=a-s a-s
cy eq

, where the equilibrium distance between an actin and a spectrin particle is 

10r =a-s
eq

nm. The potential is plotted as the black curve in Fig. S1. The spring constant k0 = 57 

ε/σ2 is chosen to be identical with the curvature of the employed Lennard-Jones potential

( ) ( )12 6

LJ( ) 4 / /ij ij iju r r rε σ σ ε = − +  
 at the equilibrium to reduce the number of free parameters. 

All spectrin particles interact with each other via the repulsive part of the L-J potential (Eq (1)). 
The lipid, glycophorin, and band-3 CG particles carry both translational and rotational degrees of 
freedom (xi, ni), where xi and ni are the position and the orientation (direction vector) of particle i, 
respectively. The rotational degrees of freedom obey the normality condition |ni| = 1. Thus, each 
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particle effectively carries 5 degrees of freedom. xij  = xj - xi is defined as the distance vector 
between particles i and j. rij ≡ |xij|  and ̂ ij ij ijx x r=  are the distance and the unit vector respectively. 

The particles forming the lipid membrane and membrane proteins interact with one another via 
the pair-wise potential 
 

( ) ( ) ( )( ) ( )mem i j ij R ij i j ij A ijn , n , x , n , n , xu u r A a u rα= + , (S.1) 

 
where 
 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

8

, , ij cut,mem

4

ij cut,memA ij cut,mem ij cut,mem eq

ij cut,mem
R ij A ij

- - for  <

for 2

for r R0,

R ij cut mem ij cut mem equ r k R r R r k r R

r Ru r k R r R r k

u r u r

ε ε

ε ε

 = −


 <= − − − −


≥ = =

 .        (S.2) 

  
uR(rij) and uA(rij) are the repulsive and attractive components of the pair potential respectively, 
and α is a tunable linear amplification factor. The function A(α,a(ni,nj,xij))= 1+α(a(ni,nj,xij) -1) 
tunes the energy well of the potential through which the fluid-like behavior of the membrane is 
regulated. In the simulations, α is chosen to be 1.55 and the cutoff distance of the potential 
Rcut,mem is chosen to be 2.6σ. The parameters α and Rcut,mem are appropriately selected  to maintain 
the fluid phase of the lipid bilayer. k is selected to be 1.2 for the interactions among the lipid 
particles and k = 2.8 for interactions between the lipid and the protein particles, such as 
glycophorin and band-3. Detailed information about the selection of the potential parameters can 
be found in the authors’ previous work5,6. Fig. S1 shows only the potential between lipid 
particles for 1A =  (blue curve). The interactions between the cytoskeleton and the lipid bilayer 
are represented by the repulsive part of the L-J potential as shown in Fig. S1 (Black curve). 

 
Fig. S1 Interaction potentials used in the membrane model. The blue curve represents the 
potential between pairs of lipid particles. The green curve represents the spring potential 
between spectrin particles. The red curve represents the spring potential between actin and 
spectrin particles. The black curve represents the repulsive L-J potential between lipid and 
spectrin particles. 

 



 

 

3.   Persistence length corresponding to the spectrin filament model 
To compute the persistence length  pl  that corresponds to the introduced spectrin filament model 

we employed the expression 
1/22 2ee p cr l L≅ , where 

1/22
eer  is the end-to-end distance of a 

thermally fluctuating flexible filament with a persistence length much smaller than its contour 

length cL  ( )p cl L<< . To calculate the end-to-end distance, we performed a molecular dynamics 

simulation of the spectrin chain model at the equilibrium temperature of 0.22 BT Kε= , where 

BK is Boltzmann’s constant. We first equilibrated the filament for 105 time steps and then 

measured the end-to-end distance for 63 10×  time steps. The measured values of 
1/22

eer  follow a 

Gaussian distribution ( ) ( ) ( )2 21 2 exp 2ee ee eeP r r rλ π λ = − −  
, where ( )2

ee eer rλ = − , 

and with a mean value of 
1/22 75.4eer nm=  (Fig. S2). Considering that the spectrin contour 

length is approximately 190 nm 7, we obtained a persistence length of approximately 15nm . This 
result is close to the experimental values of approximately 20nm  8 and 10nm  9. 
 
 
 
 

 
 
Fig. S2. Histogram of the recorded end-to-end distances ( )eer  of a free spectrin filament during 

63 10×  time steps of a coarse-grain solvent-free molecular dynamics simulation at constant 
temperature. The associated normalized Gaussian probability density (black line) is also shown. 
 
 
4.   Dependence of the diffusion coefficient of transmembrane proteins on their size  
In the membrane model, the cytoskeleton of the RBC membrane acts as a barrier preventing 
band-3 proteins from crossing the spectrin filaments. Because the model is generic, we can easily 
consider the motion of other proteins of different sizes. This is especially interesting when the 
diffusive motion of adhesion receptors is explored. It is expected that large size proteins 



 

 

compared to the average distance between spectrin filaments and the corresponding lipid bilayer 
are more likely to be hindered by the spectrin filaments leading to low diffusion coefficients. In 
contrast, the probability for smaller size proteins to cross the boundaries of the compartments is 
higher, resulting in larger diffusion coefficients. Here, we test the dependence of the diffusion 
coefficient on the size of the diffusing proteins in the lipid bilayer. In the manuscript, the domain 
of the membrane covered by a band-3 protein is considered to be a sphere of 5nm  radius while 
the effective cytosolic radius of the band-3 protein when it encounters a spectrin filament is 
selected to be 12.5nm  ( )2.8σ . This accounts for the fact that band-3 proteins have a cylindrical 

overall structure protruding in the cytoplasm3,4. The corresponding macrodiffusion coefficient of 
band-3 particles moving in the RBC membrane with perfect spectrin network is 

eff

4 2

r =2.8 s1.95 10 /D tσ σ−= × . Next, we keep the membrane domain of protein particles the same as 

with the band-3 particles at 5nm  and we modify the effective radius. When the effective radius 
of the protein particle is increased to 13.35nm  ( )3.0σ , the diffusion coefficient is decreased to

eff

4 2

r =3.0 s0.83 10 /D tσ σ−= × , as shown in Fig S3. On the other hand, when the effective radius of 

the protein particles is decreased to 11.8nm  ( )2.65σ  and 10.9nm  ( )2.45σ respectively,  the 

diffusion coefficients increased to 
eff

4 2

r =2.65 s5.1 10 /D tσ σ−= ×  and 
eff

4 2

r =2.45 s9.7 10 /D tσ σ−= × . These 

measurements are consistent with our expectation and they illustrate the strong dependence of 
the diffusion coefficient on the endoplasmic size of transmembrane proteins.  
 
 

 
Fig. S3 MSDs with respect to time and corresponding diffusion coefficients for mobile protein 
particles with different effective cytosolic radii as they diffuse in the RBC membrane with 
perfect cytoskeleton. 
 

 
 
 
 
 
 
 



 

 

5.  Additional Figures 
 
 

 
Fig. S4 MSDs of band-3 particles with respect to time for different horizontal spectrin network 
connectivities. The dashed lines represent the power laws for the corresponding anomalous 
diffusion curves. The data are fitted from 310 st  until 47 10 st× . The attraction levels between the 

lipid bilayer and the spectrin network have been adjusted to (a) n = 0 (no attraction), (b) n=0.05, 
(c) n=0.1, and (d) n=0.15. The vertical connectivity is maintained at 100%. 
 
 
 
 
 
 
  



 

 

 
 

 
Fig. S5 Logarithmic plot of the MSDs of band-3 particles with respect to time for different 
horizontal spectrin network connectivities. The dashed lines represent the power laws for the 
corresponding anomalous diffusion curves. The data are fitted from 310 st  until 47 10 st× . The 

attraction levels between the lipid bilayer and the spectrin network have been adjusted to (a) n = 
0 (no attraction), (b) n=0.05, (c) n=0.1, and (d) n=0.15. The vertical connectivity is maintained at 
100%. 
  



 

 

 

 
  

 
Fig. S6 MSDs of band-3 particles with respect to time plots for different attraction levels 
between the lipid bilayer and the spectrin network. The horizontal spectrin network 
connectivities (H.C.) have been adjusted to (a) H.C. = 0%, (b) H.C.=30%, (c) H.C.=50%, (d) 
H.C.=70%, (e) H.C.=90%, and (f) H.C.=100%.  The vertical connectivity is maintained at 100%. 



 

 

 
 

 
  

 
Fig. S7 MSDs of band-3 particles with respect to time for different vertical connectivities 
between a perfect spectrin network and the lipid bilayer. The attraction levels between the lipid 
bilayer and the spectrin network have been adjusted to (a) n = 0 (no attraction), (b) n=0.05, (c) 
n=0.1, and (d) n=0.15. The horizontal connectivity is maintained at 100%. 



 

 

 
 

  

 
Fig. S8 MSDs of band-3 particles with respect to time for different attraction levels between a 
perfect spectrin network and the lipid bilayer. The vertical connectivity (V.C.) between the 
cytoskeleton and the lipid bilayer has been adjusted to (a) V.C. = 0%, (b) V.C.=30%, (c) 
V.C.=50%, (d) V.C.=70%, (e) V.C.=90%, and (f) V.C.=100%. The horizontal connectivity is 
maintained at 100%. 



 

 

 
Fig. S9. The least squares approach is used to identify the parameters that best fit the 
numerical data (black curve) when anomalous diffusion (blue curve), for which MSD Atα= , 

and confined diffusion (red curve), for which ( ) ( )4 1 4t
micro macroMSD t D e D tττ −= − +  , are 

considered. R  represents the ratio of the sum of squares of residuals calculated for the 
anomalous diffusion over the confined diffusion. The confined diffusion fits the simulation 
results better for horizontal connectivities larger than 90%, while the anomalous diffusion is a 
better approximation for low horizontal connectivities.  
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