Supporting Information for:

On the Icephobic Performance of Alkyl-Grafted Aluminum Surfaces

S.A. Kulinicha,b,*, M. Hondaa, A.L. Zhuc, A.G. Rozhinb, X.W. Dud

a Institute of Innovative Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
b School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
c Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
d School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Surface Images of As-Prepared SA- and ODTMS-treated Samples

Figure S1. SEM surface images of as-prepared SA-treated (left) and ODTMS-treated (right) AA2024 samples. Bigger irregular (Al-Cu-Fe-Mn) and smaller regular-sized (Al-Cu-Mg) intermetallic particles are seen to have very smooth boundaries with the Al matrix, implying good surface protection by the thin layers and no signs of corrosion. Scale-bars indicate 2 µm.
Surface Images of Iced / Deiced SA- and ODTMS-treated Samples

Figure S2. SEM surface images of SA-treated (left) and ODTMS-treated (right) AA2024 samples after 33 icing/de-icing events. Bigger irregular (Al-Cu-Fe-Mn, left) and smaller regular-sized (Al-Cu-Mg, right) intermetallic particles are seen to have signs of corrosion and trenches at the boundaries with the Al matrix. Scale-bars indicate 2 µm.
Surface Images of As-Prepared Two-Layer Coatings

Figure S3. SEM images of as prepared AA2024 surfaces coated with TEOS/FAS (left), BTSE/FAS (center) and PCC/FAS (right). No signs of corrosion are seen between intermetallic particles and the Al matrix, inserts present Al-Cu-Mg second-phase particles. Scale-bars indicate 1 µm.

Shear Stress of Ice Detachment on Two-Layer Coatings

Figure S4. Shear stress of ice detachment as a function of the number of icing/deicing tests on the TEOS/FAS (left), BTSE/FAS (center) and PCC/FAS (right) coatings.
Evolution of Wetting Hysteresis on One-Layer Coatings with the Number of Icing/Deicing Tests

Figure S5. Contact angle (open triangles) and contact angle hysteresis (solid triangles) measured on the surface of ODTMS-coated sample as it was subjected to repeated icing/deicing events.

Figure S6. Contact angle hysteresis measured on the surface of FAS (squares) and SA-coated (diamonds) samples as they were subjected to repeated icing/deicing events.
Surface Composition of As-Prepared and Iced/Deiced ODTMS-Treated Samples

Table S1. Measurements of atomic composition (in at. %) by XPS for the AA2024 surface coated with ODTMS before and after 33 icing/deicing treatments. Only major metal elements are presented. The uncertainties were estimated to be about ±0.5%.

<table>
<thead>
<tr>
<th>Element</th>
<th>As-prepared surface</th>
<th>After 34 icing/deicing cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>10.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Al</td>
<td>87.1</td>
<td>90.9</td>
</tr>
<tr>
<td>Mg</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>