Intertwining Lamellar Assembly in Porous Spherulites
Composed of Two Ring-banded Poly(ethylene adipate) and Poly(butylene adipate)

Graecia Lugito and Eamor M. Woo*

Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701-01, Taiwan.

Supporting Information
S-1. POM micrographs of neat PBA (top) and neat PEA (bottom) melt crystallized at various T_c as indicated on the graphs.
S-2. POM micrographs of PBA/PEA (10/90 to 50/50) blends crystallized at $T_c = 28 - 32 \, ^\circ C$
S-3. DSC traces for melting peaks of neat PBA at various T_c (scan rate = 10 °C/min).

Figure S-3 shows the multiple melting peaks of PBA corresponding to the original melting peaks of β– and α–form crystal are symbolized by T_{m1} and T_{m3}, respectively; and the melting peak of α-form crystal which is formed by the transformation from β crystal or the recrystallized α crystal during DSC heating process are symbolized by T_{m2} and T_{m4}, respectively.$^{[34,37,47]}$ A small melting peak (indicated by arrow) appears when PBA is melt-crystallized at 31 °C (with regular ring-banded morphology). While only a small shoulder appears when $T_c = 30$ °C and none appears when $T_c = 28$ and 29 °C, at which a more irregular ring-banded morphology is observed. This result indicates that the regularity in ring-banded morphology influenced the addition melting peaks of PBA.
S-4. DSC traces for melting peaks of neat PEA, at various T_c (scan rate = 10 °C/min).

Figure S4 shows, for PEA, a small fraction of tangential lamellae (fiber-like cilia crystals) in the skin layer exhibits a high-T_m shoulder at $T_m = 50.1$ °C, in addition to the radial crystals with a lower $T_m = 42.9$ °C, as already revealed in previous reports.$^{[29-30]}$ Additional melting peaks in PEA disappear with the decreasing regularity of ring-banded morphology (shown by the arrows). This result indicates that the regularity in ring-banded morphology influenced the addition melting peaks of PEA.