Supporting Information for

Solution and surfactant-free growth of supported high index facet SERS active nanoparticles of Rhenium by phase demixing

Carlos Díaz Valenzuela, María L. Valenzuela, Sandra Cáceres, and Colm O'Dwyer

Figure S1. EDX analysis of a region of supported large crystals. The Cu signal comes from the holey carbon grid on which the material was deposited for imaging.

Figure S2. (a) HRTEM image of a localized clusters of Re in regions where circular, layered particles eventually results (see Fig. 1a in the main text), and (b) SEM image of the surface of the spin-cast, pyrolyzed support showing NP agglomeration around the rims of the holes. This confirms a similar overall process on at least two length scales, with crystals coarsening to rim edges, whose contact lines are themselves pinned, with their eventual ripening to a high index NP or supracrystal. On the right is a dark field STEM image of a high density of dispersed NPs and larger Re supracrystals within a carbon support.

S1 – Pyrolytic decomposition mechanism

It is now well known that the thermal degradation of cyclotriphosphazenes often produces cyclolinear and cyclomatrix materials [1-3]. In these cases the cross-linking of the polymeric chains of the cyclophosphazenes produces a high char yield. For the pyrolysis of the organometallic-metallic/cyclotriphosphazene mixtures, a similar mechanism to that of the analogous organometallic derivatives of polyphosphazenes could operate [4]. The high pyrolytic yields of these systems were attributed to their extensive coordination cross-linking upon heating. It is possible that during heating, the metallic ions be able to coordinate

through the phenyl groups of the cyclic triphosphazene $[NP(O_2C_{12}H_8)]_3$, resulting in the formation of a cyclomatrix [5]. Subsequent oxidation of the organic matter gives rise to holes where the metallic rhenium begins to nucleate. During this carbonization process, carbon monoxide [6] is also produced which eventually reduces the perrhenate ions (VII) to Re (0).

References

- 1. D. E. Brown, K. Ramachandra, K. R. Carter, C. W. Allen, *Macromolecules* 2001, **34**, 2870.
- 2. J. Maynard, T. R. Sharp, J. F. Haw, *Macromolecules* 1991, 24, 2794.
- 3. D. Kumar, A. D. Gupta, *Macromolecules* 1995, 28, 6323.
- 4. C. Díaz, M. L. Valenzuela, Macromolecules 2006, 39, 103.
- 5. C. Díaz, M. L. Valenzuela, L. Zuñiga, C. O'Dwyer, J. Inorg. Organomet. Polym. Mater. 2009, 19, 507.
- B. C. Tappan, M. H. Huynh, M. A. Hiskey, D. E. Chavez, E. P. Luther, J. T. Mang, S. F. Son, J. Am. Chem. Soc. 2006, 128, 6589.