<SUPPORTING INFORMATION>

Superior Photoelectrodes for Solid-state Dye-sensitized Solar Cells Using Amphiphilic TiO$_2$

Daesub Hwang1,2, Dong Young Kim1, Seong Mu Jo1, Sung-Yeon Jang3,, and Dongho Kim2,*

1Optoelectronic Materials Lab, Korea Institute of Science and Technology, Seoul 136-791, Korea
2Department of Chemistry, Yonsei University, Seoul 120-749, Korea
3Department of Chemistry, Kookmin University, Seoul 136-702, Korea

CORRESPONDING AUTHOR FOOTNOTE

E-mail: syjang@koomin.ac.kr, Tel: +82- 2- 910-5768, Fax: +82- 2- 910- 4415
Supporting Information Material

Figure S1. TEM images of amorphous titania prepared by hydrothermal synthesis at (A) 80 °C for 16 h and (B) 160 ° for 48 h.
Figure S2. (A) Schematic illustration of ss-DSSC fabrication. (B) SEM image of TiO$_2$-NP-based photoelectrode. (C) SEM image of TiO$_2$-NS-based photoelectrode (laminated).
Figure S3. (A) Representative electrical equivalent circuit of DSSCs. (B) Ideal ESI plot of a DSSC with the real parts of the impedances R_0, R_1, R_2, and R_3.
Figure S4. *J*-*V* characteristics of the ss-DSSC-P25 under the conditions of simulated global AM 1.5 solar radiation at 100 mW·cm⁻².