Hydrazone end capped molecular donors for Bulk Heterojunction solar cells. Open Circuit Voltage tuning through molecular design.

Mauro Sassi, Maurizio Crippa, Riccardo Ruffo, Riccardo Turrisi, Martin Drees, Upendra K. Pandey, Roberto Termine, Attilio Golemme, Antonio Facchetti and Luca Beverina*

*a Department of Materials Science and INSTM, University of Milano-Bicocca, Via Cozzi 53, I-20125 Milano, Italy. b Polyera Corporation, 8045 Lamon Avenue, Suite 140, Skokie, IL 60077. c Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM, CNR-IPCF UOS CS - LiCryL, Dipartimento di Chimica, Università della Calabria, 87036 Rende, Italy.

Supporting information.

1. 1H NMR of Derivative 1
2. 13C NMR of Derivative 1
3. 1H NMR of Derivative 2
4. 13C NMR of Derivative 2
5. 1H NMR of Derivative 3
6. 13C NMR of Derivative 3
7. 1H NMR of Derivative 5
8. 13C NMR of Derivative 5
9. Table S1. Data for Solution-Processed Squaraine:PC$_{71}$BM BHJ Photovoltaic Cells.
10. Figure S1. AFM images of representative devices made with derivatives 1-5 as the Donor compound.
11. Figure S2. DPV plots of derivatives 1-5.
1. 1H NMR of Derivative 1 (500 MHz, CDCl$_3$)
2. 13C NMR of Derivative 1 (125.70 MHz, CDCl$_3$)
3. 1H NMR of Derivative 2 (500 MHz, C$_6$D$_6$)
4. 13C NMR of Derivative 2 (125.70 MHz, C$_6$D$_6$)
5. 1H NMR of Derivative 3 (500 MHz, DMSO-d_6)

Note that derivative 3 is not fully stable in DMSO, however the NMR spectra in CDCl$_3$, CD$_2$Cl$_2$ and C$_6$D$_6$ are broad and without any interpretable splitting pattern due to aggregation.
6. 13C NMR of Derivative 3 (125.70 MHz, DMSO-d$_6$)

Note that derivative 3 is not fully stable in DMSO, however the NMR spectra in CDCl$_3$, CD$_2$Cl$_2$ and C$_6$D$_6$ are broad and without any interpretable splitting pattern due to aggregation.
7. 1H NMR of Derivative 5 (500 MHz, C$_6$D$_6$)
8. 13C NMR of Derivative 5 (125.70 MHz, C$_6$D$_6$).
9. Table S1. Data for Solution-Processed Hydrazones:PC$_{71}$BM BHJ Photovoltaic Cells.

<table>
<thead>
<tr>
<th>Blend</th>
<th>Active Layer (nm)</th>
<th>V_{oc} (Volts)</th>
<th>I_{sc} (mA/cm2)</th>
<th>Efficiency (η)</th>
<th>Fill Factor (FF)</th>
<th>Cathode Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:PC$_{61}$BM</td>
<td>50</td>
<td>0.54</td>
<td>1.67</td>
<td>0.29</td>
<td>0.32</td>
<td>LiF/Al</td>
</tr>
<tr>
<td>1:PC$_{71}$BM</td>
<td>50</td>
<td>0.57</td>
<td>2.66</td>
<td>0.48</td>
<td>0.32</td>
<td>LiF/Al</td>
</tr>
<tr>
<td>1:PC$_{71}$BM</td>
<td>50</td>
<td>0.62</td>
<td>2.69</td>
<td>0.59</td>
<td>0.35</td>
<td>Ca/Al</td>
</tr>
<tr>
<td>2:PC$_{71}$BM</td>
<td>70</td>
<td>0.58</td>
<td>1.90</td>
<td>0.36</td>
<td>0.33</td>
<td>Ca/Al</td>
</tr>
<tr>
<td>(1:3) 3:PC$_{71}$BM</td>
<td>50</td>
<td>0.68</td>
<td>4.70</td>
<td>1.16</td>
<td>0.36</td>
<td>LiF/Al</td>
</tr>
<tr>
<td>(1:3) 4:PC$_{71}$BM</td>
<td>50</td>
<td>0.56</td>
<td>7.16</td>
<td>1.49</td>
<td>0.37</td>
<td>LiF/Al</td>
</tr>
<tr>
<td>(1:1) 5:PC$_{71}$BM</td>
<td>50</td>
<td>0.77</td>
<td>2.50</td>
<td>0.6</td>
<td>0.30</td>
<td>LiF/Al</td>
</tr>
<tr>
<td>(1:2) 5:PC$_{71}$BM</td>
<td>50</td>
<td>0.74</td>
<td>5.10</td>
<td>1.20</td>
<td>0.33</td>
<td>LiF/Al</td>
</tr>
<tr>
<td>(1:3) 5:PC$_{71}$BM</td>
<td>75</td>
<td>0.71</td>
<td>6.17</td>
<td>1.53</td>
<td>0.35</td>
<td>LiF/Al</td>
</tr>
</tbody>
</table>
10. Figure S1. AFM images of representative devices made with derivatives 1-5 as the Donor compound.

Figure S1. AFM images of the active layer of Derivatives 1-5 based OPV devices. Phase contrast.
11. Figure S2. DPV plots of derivatives 3 and 5.