Electronic Supplementary Information

Facile fabrication of MWCNTs-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performance

Juan Yanga, Chang Yua, Xiaoming Fana, Zheng Linga, Jieshan Qiua,*, and Yury Gogotsib

a Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

b Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.

*Corresponding author. Fax: 411-84986080; Tel: 411-84986024; E-mail: jqiu@dlut.edu.cn
Fig. S1. TEM images of (a) the NiCoAl-LDH nanosheets and (b) the NiCoAl-LDH/MWCNT nanohybrids.

Fig. S2. TEM image and EDX elemental mappings of NiCoAl-LDH/MWCNT nanohybrids.
Fig. S3. Nitrogen adsorption/desorption isotherms of the NiCoAl-LDH and NiCoAl-LDH/MWCNT nanohybrids.

Table S1 Pore structure parameters of the NiCoAl-LDH and NiCoAl-LDH/MWCNT nanohybrids

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m2 g$^{-1}$)</th>
<th>Average pore size (nm)</th>
<th>Pore volume (cm3 g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCoAl-LDH</td>
<td>119</td>
<td>18</td>
<td>0.55</td>
</tr>
<tr>
<td>NiCoAl-LDH/MWCNT</td>
<td>123</td>
<td>19</td>
<td>0.59</td>
</tr>
</tbody>
</table>