Supporting Information

For

Potassium Niobate Nanostructures: Controllable Morphology, Growth Mechanism, and Photocatalytic Activity

Linqin Jiang,a Yu Qiu,b and Zhiguo Yi,a,*

aKey Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

bNew Energy Technology Center, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201807, China.

Corresponding Author

*Email: zhiguo@fjirsm.ac.cn. Tel: 86-591-83806523. Fax: 86-591-83714946.
Figure S1. UV-vis spectral changes of RhB as a function of irradiation time catalyzed by KNbO₃ nanotowers synthesized at (a) 150 °C, (b) 200 °C and (c) nanorods synthesized at 250 °C.
Figure S2. UV-vis spectral changes of RhB as a function of irradiation time catalyzed by (a) KNbO₃ nanowires and (b) KNbO₃ nanocubes.
Figure S3. UV-vis diffuse reflectance spectra of various KNbO₃ nanostructures.

Figure S4. Adsorption (dark zone), photosensitization (λ>420 nm) as well as intrinsic photocatalytic effects in RhB degradation upon the KNbO₃ nanocubes.