Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light

Sheng Ye, Ling-Guang Qiu,* Yu-Peng Yuan, Yu-Jun Zhu, Jiang Xia and Jun-Fa Zhu

a Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China.
b National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.

* Corresponding author

Fax: 86-551-5108212; Tel.: 86-551-5108212;
E-mail: lgqiu@ahu.edu.cn (L.-G. Qiu)
Figure S1. N₂ sorption–desorption isotherms of the as-prepared (a) pure g-C₃N₄ and (b-f) Fe₂O₃/g-C₃N₄ composite photocatalysts 1-5 measured at 77K. The inset shows corresponding pore size distribution analysis obtained using the density functional theory (DFT).
Figure S2. Magnetic separation property of the as-prepared Fe$_2$O$_3$/g-C_3N$_4$ composite photocatalysts 1-5 under an external magnetic field compared with pure g-C_3N$_4$.

Figure S3. TEM images and high-resolution TEM images of the representative Fe$_2$O$_3$/g-C_3N$_4$ composite photocatalysts after the reaction.