Marked Improvement in the Stability of a Small Molecular Organic Photovoltaic by Interfacial Modification Using Self-assembled Monolayers to Prevent Indium Diffusion into the Active Layer

Ming-Chung Chen, Yi-Shiang Chiou, Jian-Ming Chiu, Abebe Tedla, and Yian Tai*

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road Sec.4, Taipei-106, Taiwan

*Corresponding Author:
Prof. Yian Tai
Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road Sec. 4, Taipei 106, Taiwan.
Phone: +886-2-2737-6620, Fax: +886-2-2737-6644
E-mail: yta@mail.ntust.edu.tw
Fig. S1.

XPS spectra of (a) B2C-SAMs, (b) B4C-SAMs, and (c) B6C-SAMs on the ITO surface for C 1s core levels.
Fig. S2.

Contact angle (CA) images of (a) bare ITO, and various BxC-SAMs of the (b) B2C, (c) B4C, and (d) B6C group on the ITO substrate.
Fig. S3.

XPS spectra of (a) C 1s and (b) O 1s core levels for various BxC-SAMs on pristine and annealed (180°C, 3 min) ITO surfaces.
Fig. S4.

AFM images and surface roughness of (a) bare ITO, and (b) B2C, (c) B4C, and (d) B6C modified substrate.
Fig. S5.

AFM images of 30 nm thick PEDOT:PSS films deposited on (a) bare ITO, and (b) B2C, (c) B4C, and (d) B6C - modified substrate.
Fig. S6.

XPS depth profiles of (a) CuPc/PEDOT:PSS/ITO, (b) CuPc/PEDOT:PSS/B2C/ITO, (c) CuPc/PEDOT:PSS/B4C/ITO, and (d) CuPc/PEDOT:PSS/B6C/ITO, 91 days after fabrication.