Supplementary Information

Mesoporous Silicon@Carbon Composites via Nanoparticle-Seeded Dispersion Polymerization
And their application as Lithium-Ion Battery Anode Materials†

Juchen Guo, *a§ Zichao Yang, a and Lynden A. Archer* a
a School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA. Email: laa25@cornell.edu, jguo@engr.ucr.edu.
§ Current address: Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, CA 92521, USA

Figure S1: TEM image of the pristine SiNPs.
Figure S2: Mixture of pure PAN particles and SiNP@PAN particles from dispersion polymerization with 6 mM SDS concentration.

Figure S3: Pure PAN particles from dispersion polymerization without the MPS-SiNP seeds.
Figure S4: TGA curve of the SiNP@PAN particles. TGA was performed in dry air, and the temperature ramp was 5°C sec\(^{-1}\). The SiNPs content is estimated to be 40 wt% before carbonization.

Figure S5: TGA result of the SiNP@C particles. TGA was performed in dry air, and the temperature ramp was 5°C sec\(^{-1}\). The SiNP content is 56 wt% in the final product.