Supporting Information

B, N- and P, N-doped Graphene as Highly Active Catalysts for Oxygen Reduction Reactions in Acidic Media

Chang Hyuck Choi, Min Wook Chung, Han Chang Kwon, Sung Hyeon Park,
and Seong Ihl Woo*
Table of contents

1. Equations

2. Tables

Table S1. Compositions of the prepared graphene-based catalysts obtained from EA and ICP analysis.

Table S2. Proportion of various N-doping types among pyridinic-N (N1), graphitic-N (N2), and pyridinic-oxide (N3) in the prepared catalysts obtained from the XPS results. The values in parenthesis for BNGr indicate the proportions of all N-doping type including BN (N0).

Table S3. Proportion of B-doping and P-doping types in the BNGr and PNGr, respectively.

3. Figures

Figure S1. Newly generated graphite materials via carbonization of DCDA on metal seeds.

Figure S2. EDS mapping images of NGr, BNGr, and PNGr.

Figure S3. XPS results for C1s, O1s, Co2p, and Fe2p in the prepared catalysts.

Figure S4 Mass activities calculated at 0.75 V for the graphene- and graphite-derived catalysts. The mass activities for the graphite-derived catalysts were calculated from our previous works (ref. 21). Moreover, for more valid comparison, the mass activity of the graphene-derived catalysts were obtained at the same conditions with ref. 21 and was indicated by check-pattered bar.

Figure S5. LSV results of the NGr (a) before and (b) after acid-leaching steps in oxygen saturated 0.1M HClO₄.

Figure S6. LSV results of bare graphene, BGr, PGr, and NGr in oxygen saturated 0.1M HClO₄.
1. Equations

1.1 Calculation of kinetic current

\[
\frac{1}{I} = \frac{1}{I_k} + \frac{1}{I_d}
\]

\(I \): current from disk electrode, \(I_k \): kinetic current, and \(I_d \): diffusion current.

1.2 Calculation of \(\text{H}_2\text{O}_2 \) yield and number of electrons transferred

\[
\text{H}_2\text{O}_2 \text{ (\%)} = 200 \times \frac{I_R/n}{I_R/n + I_D}
\]

\[
N = 4 \times \frac{I_D}{I_R/n + I_D}
\]

\(I_R \): current from ring disk electrode, \(I_D \): current from disk electrode, \(n \): collection efficient, and \(N \): number of electrons transferred.
2. Tables

Table S1. Compositions of the prepared graphene-based catalysts obtained from EA and ICP analysis.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGr</td>
<td>86.9</td>
<td>6.6</td>
<td>0.3</td>
<td>5.9</td>
<td>-</td>
<td>0.3</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BNGr</td>
<td>82.6</td>
<td>7.8</td>
<td>0.8</td>
<td>6.9</td>
<td>1.5</td>
<td>0.3</td>
<td>8.4</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PNGr</td>
<td>85.8</td>
<td>7.0</td>
<td>1.4</td>
<td>5.1</td>
<td>-</td>
<td>0.4</td>
<td>5.9</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

[^a] Compositions obtained from EA analysis (at. %)
[^b] Compositions obtained from ICP analysis (at. %)
[^c] Doping concentrations (%)

Table S2. Proportion of various N-doping types among pyridinic-N (N1), graphitic-N (N2), and pyridinic-oxide (N3) in the prepared catalysts obtained from the XPS results. The values in parenthesis for BNGr indicate the proportions of all N-doping type including BN (N0).

<table>
<thead>
<tr>
<th></th>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGr</td>
<td>-</td>
<td>53.8</td>
<td>29.8</td>
<td>16.4</td>
</tr>
<tr>
<td>BNGr</td>
<td>-</td>
<td>(40.6)</td>
<td>77.9 (46.3)</td>
<td>18.2 (10.8)</td>
</tr>
<tr>
<td>PNGr</td>
<td>-</td>
<td>64.4</td>
<td>28.6</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Table S3. Proportion of B-doping and P-doping types in the BNGr and PNGr, respectively.

<table>
<thead>
<tr>
<th>B (%)[^a]</th>
<th>P (%)[^b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 25.0</td>
<td>P1 16.2</td>
</tr>
<tr>
<td>B2 48.9</td>
<td>P2 77.6</td>
</tr>
<tr>
<td>B3 26.1</td>
<td>P3 6.2</td>
</tr>
</tbody>
</table>

3. Figures

Fig. S1 Newly generated graphite materials *via* carbonization of DCDA on metal seeds.[1]

Fig. S2 EDS mapping images of NGr, BNGr, and PNGr.
Fig. S3 XPS results for C_{1s}, O_{1s}, Co_{2p}, and Fe_{2p} in the prepared catalysts.
Fig. S4 Mass activities calculated at 0.75 V for the graphene- and graphite-derived catalysts. The mass activities for the graphite-derived catalysts were calculated from our previous works (ref. 21). Moreover, for more valid comparison, the mass activity of the graphene-derived catalysts were obtained at the same conditions with ref. 21 and was indicated by check-pattered bar.
Fig. S5 LSV results of the NGr (a) before and (b) after acid-leaching steps in oxygen saturated 0.1M HClO₄.

As shown in Table S1, NGr has ~0.3 at.% metal residues, which is corresponded to ~1.3 wt.% However, most of the metal residue was eliminated (< 0.2 wt. %) after the additional secondary acid leaching step.
Fig. S6 LSV results of bare graphene, BGr, PGr, and NGr in oxygen saturated 0.1M HClO₄.