Electronic Supplementary Information for:

One, two and three-branched triphenylamine-oligothiophene hybrids for solution-processed solar cells

Yuze Lin, Zhi-Guo Zhang, Yongfang Li, Daoben Zhu, and Xiaowei Zhan

a Beijing National Laboratory for Molecular Sciences and Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: xwzhan@iccas.ac.cn

b Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.

c University of Chinese Academy of Sciences, Beijing 100049, China.
Experimental details

Measurements. The 1H and 13C NMR spectra were measured on a Bruker AVANCE 400 MHz spectrometer. Mass spectra were measured on a GCT-MS micromass spectrometer using the electron impact (EI) mode or on a Bruker Daltonics BIFLEX III MALDI-TOF Analyzer using MALDI mode. Elemental analyses were carried out using a FLASH EA1112 elemental analyzer. Solution (dichloromethane) and thin film (on quartz substrate) UV-vis absorption spectra were recorded on a JASCO V-570 spectrophotometer. Electrochemical measurements were carried out under nitrogen on a deoxygenated solution of tetra-n-butylammonium hexafluorophosphate (0.1 M) in CH$_3$CN using a computer-controlled CHI660C electrochemical workstation, a glassy-carbon working electrode coated with samples, a platinum-wire auxiliary electrode, and an Ag wire anodized with AgCl as a pseudo-reference electrode. Potentials were referenced to ferrocenium/ferrocene (FeCp$_2$$^{+}$)0) couple by using ferrocene as an internal standard. Thermogravimetric analysis (TGA) measurements were performed on Shimadzu thermogravimetric analyzer (model DTG-60) under a nitrogen flow at a heating rate of 10 °C min$^{-1}$. Differential scanning calorimetry (DSC) measurements were performed using a METTLER differential scanning calorimeter (DSC822e) under nitrogen at a heating rate of 10 °C min$^{-1}$. The nanoscale morphology of blend film was observed by using a Veeco Nanoscopy V atomic force microscopy (AFM) in tapping mode.

Hole mobility measurements. Hole-only diodes were fabricated using the architectures: ITO/PEDOT:PSS/TPA-2T-CA, TPA-3T-CA, L(TPA-3T-CA) or S(TPA-3T-CA)/Au. Mobilities were extracted by fitting the current density–voltage curves using the Mott–Gurney relationship (space charge limited current).
Fig. S1 TGA curves of TPA-1T-CA, TPA-2T-CA, TPA-3T-CA, L(TPA-3T-CA) and S(TPA-3T-CA).

Fig. S2 DSC curves of TPA-2T-CA, TPA-3T-CA, L(TPA-3T-CA) and S(TPA-3T-CA).
Fig. S3 Field dependence of the current for hole-only devices.

References