Electronic Supporting Information

One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal

Jie Maa, Zhiliang Zhua, Bo Chena, Mingxuan Yanga, Huiming Zhoua, Chen Lia, Fei Yuab*, Junhong Chenabc*

a State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China

b School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China

c Department of Mechanical Engineering, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA

Materials and methods

Preparation of MI/CNTs composites.

The MI/CNTs composites were prepared by a alkali-activated method using APCNTs. The APCNTs were prepared by the catalytic chemical vapor deposition method[1]. In a typical synthesis, APCNTs and KOH powder were mixed in a stainless steel vessel in an inter-gas atmosphere. The weight ratio of KOH to APCNTs was 1:4. The APCNTs and KOH powder was mixed for 10 min using a mortar, which resulted in a uniformly powder mixture. The mixture was then heated to 1023 K for 1 h under flowing argon in a horizontal tube furnace, washed in the deionized water, and then dried.

Characterization methods

The microstructure and morphology of the APCNTs or MI/CNTs composites was analyzed by transmission electron microscopy (TEM, JEOL 2100, Japan). X-Ray diffraction (XRD) experiments were conducted on specimens of the magnetic hybrid materials; the X-ray diffractometer (Bruker D8 Advance, Bruker AXS, Germany) was operated at 40 KV and 40 mA. Nickel-filtered Cu\textsubscript{K\textalpha} radiation was used in the incident
beam. The specific surface area, pore volume, and pore size distribution of the MI/CNTs composites were calculated from the adsorption/desorption isotherms of N\textsubscript{2} at 77K by the multi-point BET and DFT method using an Autosorb-iQ-C (Quantachrome, American, Inc.), and the sample was degassed at 373k for 4h prior to the measurements. X-Ray photoelectron spectroscopy (XPS) analysis was carried out in a Kratos Axis Ultra DLD spectrometer, using monochromated Al Ka X-rays at a base pressure of 1×10-9 Torr. Survey scans determined between 1100 and 0 eV revealed the overall elemental compositions of the sample, and regional scans for specific elements were performed. The peak energies were calibrated by placing the major C\textsubscript{1s} peak at 284.6 eV. Samples were prepared identically to those of the batch experiments. Raman spectroscopy (JOBIN-YVON T64000) was used to further characterize MI/CNTs. A TA Instruments® Q600 SDT thermal analyzer was used for high-resolution thermogravimetric analysis (TG) and differential thermal analysis (DTA). TG and DTA curves were obtained by heating approximately 10 mg of MI/CNTs from 50 to 900\textdegree C at a heating rate of 10 °C/min in air. The magnetization was measured using a superconducting quantum interference device magnetometer (MPMS XL7, Quantum Design). The residual As(V) and As(III) concentrations in solution were determined by an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, Optima 2000, Perkin Elmer, U.K.).

Batch sorption experiments

Batch experiments were conducted to evaluate the adsorption performance of As(V) or As(III) on the adsorbents. Two typical materials, APCNTs and MI/CNTs, were selected as adsorbents for As(V) or As(III) adsorption in an aqueous solution. 1000 mg·L-1 Stock solution of As (V) and As(III) was prepared by dissolving 4.1653 g Na\textsubscript{2}HAsO\textsubscript{4}·7H\textsubscript{2}O and 1.732 g NaAsO\textsubscript{2}, respectively, in 1L deionized water. And working solutions of required concentrations were obtained by diluting the As(V) and As(III) stock solution with deionized water. All the sorption tests were conducted in well-capped 250 mL flasks containing 50 mL As(V) or As(III) solution with required concentration. After 10 mg of adsorbent was added, the flasks were shaken in a thermostatic shaker at 150 rpm at 298K for 24 h. All the adsorption experiments were
conducted in duplicate, and only the mean values were reported. The maximum deviation for the duplicates was usually less than 5%. The blank experiments without the addition of APCNTs or MI/CNTs were conducted to ensure that the decrease in the concentration was actually due to the adsorption of APCNTs or MI/CNTs, rather than by the adsorption on the glass bottle wall. After adsorption, the adsorbent was separated by a 0.45μm membrane. The residual arsenic concentrations in solution were determined by an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, Agilent 720ES, USA). The adsorption isotherm was studied at pH 5.5, the initial concentration of As(V) or As(III) solution was set from 0.5 mg/L to 11 mg/L, and the adsorption isotherms were then modeled using the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isothermal adsorption model.

The amount of adsorbed As(V) or As(III) on adsorbents \(q_t \text{, mg/g} \) was calculated as follows:

\[
q_t = (C_0 - C_t) \times \frac{V}{m}
\]

(1)

Where \(c_0 \) and \(c_t \) are the As(V) or As(III) concentrations at the beginning and after a period of time (mg/L); \(V \) is the initial solution volume (L); and \(m \) is the adsorbent weight (g).

UV-Visible Spectroscopy

Measurements were made on the CNTs solution in quartz cuvettes using a double-beam UV-visible spectrophotometer(UV759UV-VIS, Shanghai Precision & Scientific Instrument Co. Ltd.) in the 200-800 nm range. Since the Beer-Lambert law is not obeyed at strong absorbance[2], the CNTs solution were diluted appropriately to keep the measured values of absorbance in the range of 0.1-2 in the entire wavelength range[3]. A UV-visible absorption-based approach is used for a direct measurement of the concentration of CNTs[4, 5]. A calibration plot is then made by monitoring the intensity of the peak as a function of the true concentration of the CNTs. Earlier reference stated that the adsorption peak at ~265 nm is a signature of the surface \(\pi \)-plasmon exciation of the CNTs. Thus, we build a calibration curve by monitoring
the adsorbance value for this peak at 265 nm as a function of CNT concentration, and then we are able to estimate the unknown concentration of CNTs in the solution by measuring its optical absorbance.

Data analysis

Langmuir model

The form of the Langmuir isotherm can be represented by the following equation:

\[q_e = q_m \frac{K_L C}{1 + K_L C} \] \((2) \)

where \(q_e \) is the amount of dye adsorbed per gram of adsorbent (mg/g), \(C \) denotes the equilibrium concentration of dye in solution (mg/L); \(K_L \) represents the Langmuir constant (L/mg) that relates to the affinity of binding sites; and \(q_m \) is a theoretical limiting adsorption capacity when the monolayer surface is fully covered with dye molecules and assists in the comparison of adsorption performance (mg/g). Another important parameter, \(R_L \) (the separation factor or equilibrium parameter, which can be used to determine the feasibility of adsorption in a given concentration range over adsorbent), also evaluated in this study, was determined from the relation[6]:

\[R_L = \frac{1}{1 + K_L C_0} \] \((3) \)

where \(K_L \) is the Langmuir adsorption constant (l/mg) and \(C_0 \) is the initial dye concentration (20mg/l). Ho and McKay[7] established that (1) \(0<R_L<1 \) for favorable adsorption, (2) \(R_L>1 \) for unfavorable adsorption, (3) \(R_L=1 \) for linear adsorption and (4) \(R_L=0 \) for irreversible adsorption.

Freundlich model

The Freundlich isotherm model has the following form:

\[q_e = K_F C^{1/n} \] \((4) \)

where \(q_e \) is the amount of dye adsorbed per gram of adsorbent (mg/g); \(C \) is the equilibrium dye concentration in solution (mg/L); \(K_F \) and \(n \) are the Freundlich
constants, which represent the adsorption capacity and the adsorption strength, respectively. The magnitude of $1/n$ quantifies the favorability of adsorption and the degree of heterogeneity of the adsorbent surface.

Dubinin-Radushkevich (D-R) model

The D-R isotherm model has the following form:

$$
\ln q_e = \ln q_m - B\varepsilon^2
$$

(5)

B, a constant related to the mean free energy of adsorption (mol2/kJ2); q_m, the theoretical saturation capacity; and ε, the Polanyi potential, which is equal to

$$
\varepsilon = RT \ln(1 + \frac{1}{C})
$$

(6)

where R (J·mol$^{-1}$·K$^{-1}$) is the gas constant and T (K) is the absolute temperature. For the D-R isotherm model, from B values the mean energy of adsorption, E, can be calculated using the relation[8]

$$
E = \frac{1}{\sqrt{-2B}}
$$

(7)

Based on equations (5), (6), and (7), the isotherm constants, E and determination coefficients were calculated. The mean energy of adsorption (E) is the free energy change when one mole of ions is transferred from infinity in the solution to the surface of the solid. When one mole of ions is transferred, its value is in the range of 1-8 kJ·mol$^{-1}$ for physical adsorption[9]. The value of E is between 8 and 16 kJ·mol$^{-1}$ for an adsorption process by ion-exchange. A value of E in the range of 20-40 kJ·mol$^{-1}$ is indicative of chemisorption[10].
Fig. S1 EDS of MI/CNTs.
Fig S2 Representative absorption spectra of CNTs in aqueous solution with different concentration
Fig. S3 Absorbance of CNT dispersion with varying concentration

Fig. S3 shows a plot of absorbance at 265 nm, measured as a function of CNT concentration. While the intensity of the 265 nm peak increases linearly with increasing CNT concentration. Thus, the intensity of the 265 nm peak could be used in the construction of the calibration plots for the true CNT concentration. The linear calibration curves show the true concentration of CNTs in the given dispersion (in agreement with Beer-lambert law). With these curves in hand, we are able to estimate the real concentration of residual CNTs in an aqueous dispersion after magnetic separation. In this procedure, the absorbance of the CNTs dispersion after magnetic separation is measured and the CNT concentration is determined from the calibration curve. The absorbance of the residual CNTs is -0.007, as shown in Fig. S2. It is noteworthy to observe that the concentration of residual CNTs is almost 0 g/L, calculated from the linear calibration curves, as shown in Fig. S3.
Fig. S4 Kinetic curves of arsenic removal on MI/CNTs (As(V)/As(III) concentration=2 mg/L, MI/CNTs=0.2 g/L)
Fig. S5 (a) Langmuir, (b) Freundlich, (c) D–R isotherms for As(V) and As(III) adsorption onto MI/CNTs.
Fig. S6 As 3d XPS spectra of MI/CNTs after As(III) (a) and As(V) (b) adsorption.
<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Surface area (m²/g)</th>
<th>Average pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>Pore volume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSA</td>
<td>ESA</td>
<td>ISA</td>
<td>Micropore</td>
</tr>
<tr>
<td>APCNTs</td>
<td>113.5</td>
<td>127.5</td>
<td>0</td>
<td>11.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI/CNTs</td>
<td>662.1</td>
<td>617.8</td>
<td>44.3</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adsorbents</td>
<td>C%</td>
<td>O%</td>
<td>Fe%</td>
<td>As%</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>APCNTs</td>
<td>96.72</td>
<td>2.88</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>MI/CNTs</td>
<td>72.36</td>
<td>21.06</td>
<td>6.58</td>
<td>0</td>
</tr>
<tr>
<td>MI/CNTs-As(III)</td>
<td>78.97</td>
<td>15</td>
<td>5.35</td>
<td>0.68</td>
</tr>
<tr>
<td>MI/CNTs-As(V)</td>
<td>75.45</td>
<td>18.13</td>
<td>5.86</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Table S3. Langmuir, Freundlich, and Dubinin-Radushkevich isotherms parameters of As(V) and As(III) adsorption on MI/CNTs system

<table>
<thead>
<tr>
<th>Adsorbate</th>
<th>Langmuir model</th>
<th>Freundlich model</th>
<th>Dubinin-Radushkevich model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_m(mg/g)</td>
<td>K_L(l/mg)</td>
<td>R^2</td>
</tr>
<tr>
<td>As(V)</td>
<td>9.74</td>
<td>0.589</td>
<td>0.998</td>
</tr>
<tr>
<td>As(III)</td>
<td>8.13</td>
<td>0.490</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Reference