Supporting Information

To

Towards Mesoporous Keggin-Type Polyoxometalates –Systematic Removal of Organic Templates

Thomas Lunkenbein,1 Marleen Kamperman,2 Martin Schieder,1 Sebastian With,3 Zihui Li,4 Hiroaki Sai,4 Stephan Förster,3 Ulrich Wiesner,4 Josef Breu1,*

1 Inorganic Chemistry I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
2 Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, Netherlands;
3 Physical Chemistry I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
4 Materials Science & Engineering, Cornell University, 330 Bard Hall, Ithaca, NY 14853, USA.
Figure SI 1: Representative TEM/SEM images of calcination routes: direct calcination in air (route 1), calcination in oxidative atmosphere (route 2) and plasma treatment (route 3).
Figure SI 2: PXRD patterns of carbon/H₃PMo composite calcined at 360 °C for 20 h in air. Symbols denote expected reflex positions for monoclinic (+), orthorhombic (°) MoO₃, cubic H₃PMo (*) and partially reduced molybdenum oxides (°) such as (Mo₄O₁₁, Mo₈O₂₃, respectively.
Figure SI 3: Pore diameter and wall thicknesses evolution as function of calcination time.
Plasma treatment

Figure SI 4: TEM micrograph of POM-plasma at low magnification.
Figure SI 4: FTIR spectra of plasma treated bulk material showing the four characteristic vibrations attributed to H$_3$PMo.