Randomly Stacked Holey Graphene Anodes for Lithium Ion Batteries with Enhanced Electrochemical Performance

Zhongqing Jiang, Bo Pei, and Arumugam Manthiram*
Materials Science and Engineering Program and Texas Material Institute
University of Texas at Austin, Austin, TX 78712, United States
* Corresponding author. Email: manth@austin.utexas.edu. Tel.: +1 512 471 1791; fax: +1 512 471 7681.

Fig. S1 Electrochemical performance of the carbon paper: (a) Galvanostatic charge/discharge profiles of the first three cycles of the carbon paper at a low rate of 0.05 C between 3.0 and 0.01 V vs. Li⁺/Li; (b) rate capabilities and cycle performance of the carbon paper at rates from 0.05 to 10C; (c) galvanostatic charge/discharge profiles of the carbon paper at different rates from 0.1C to 10C.

The low charge/discharge capacities of the carbon paper indicate that it can be used as the collecting electrode with negligible contributions to the electrochemical performance of the randomly stacked holey graphene (RSHG).