Organic photovoltaics based on a cross-linkable PCPDTBT analogue; synthesis, morphological studies, solar cell performance and enhanced lifetime

Huw Waters, Shu-Wei Chang, Jeff Kettle*, Chun-Jen Su, Wei-Ru Wu, U-Ser Jeng, Ya-Ching Tsai, and Masaki Horie*

School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK.

Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu, 30013 Taiwan.

Supplementary Information

Correspondence Address
Dr. Jeff Kettle
School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK.
E-mail: j.kettle@bangor.ac.uk

Co-correspondence Address
Dr. Masaki Horie
Department of Chemical Engineering, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu, 30013 Taiwan.
E-mail: mhorie@mx.nthu.edu.tw
Fig. SI-1 ^1H and ^{13}C NMR (500 MHz, CDCl$_3$) spectra of 4,4-bis(5-hexenyl)-CPDT.
Fig. SI-2 ¹H and ¹³C NMR (500 MHz, CDCl₃) spectra of 2,6-dibromo-4,4-bis(5-hexenyl)-CPDT.
Fig. SI-3 FAB mass spectrum of 4,4-bis(5-hexenyl)-CPDT.

Fig. SI-4 FAB mass spectrum of 2,6-dibromo-4,4-bis(5-hexenyl)-CPDT.
Fig. SI-5 1H NMR (500 MHz, CDCl$_3$) spectrum of polymer 5.
Scheme SI-1. Model reaction

\[\text{excess} \quad \text{Br} \quad \text{OMe} \quad \xrightarrow{\text{Pd(PPh\textsubscript{3})\textsubscript{4}, K\textsubscript{2}CO\textsubscript{3}}} \quad \text{toluene} \quad \text{R = H and 2 of } \text{OMe} \]

Fig. SI-6 \(^1\text{H} \) NMR spectrum (500 MHz, CDCl\textsubscript{3}) of resulting product(s) of the model reaction. Integration ratio between -OMe and -CH\textsubscript{3} is 2:1, supposed two anisole additives.
Fig. SI-7 ESI mass spectrum of resulting product(s) of the model reaction. [M – OMe₂]^+ = 279, supposed two anisole additives.
Fig. SI-8 Fourier Transform infrared (FTIR) measurements of polymers 4, and 7 before and after crosslinking/annealing. Polymer 7 showed consistent changes to polymer 5. Polymer 4 and 6 (not shown) displayed minor changes due to lower reactive site concentration (5%).

Fig. SI-9 Photographic images of vials of (a) polymer 4, (b) polymer 5 and (c) polymer 6 before (left hand vial) and after crosslinking (right hand vial).
Annealed at 80°C

<table>
<thead>
<tr>
<th></th>
<th>V_{OC} (V)</th>
<th>J_{SC} (mA/cm2)</th>
<th>FF</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer 4</td>
<td>0.6351</td>
<td>12.84</td>
<td>44.75</td>
<td>3.65</td>
</tr>
<tr>
<td>Polymer 5</td>
<td>0.6591</td>
<td>12.44</td>
<td>46.24</td>
<td>3.80</td>
</tr>
</tbody>
</table>

Fig. SI-10 (a) OPV performance of 5 after annealing the active layer at 260°C; no photocurrent was observed due to PCBM aggregation and PEDOT:PSS degradation. Similar performance was observed in polymer 4 after annealing the active layer at 260°C. The likely cause was due to PCBM aggregation and also PEDOT:PSS degradation. Figure (b) shows the active layer surface before and after annealing at 260°C for a 5x5μm area showing PCBM aggregation. Both polymer 4 and 5 performed well at temperatures below crosslinking temperatures (see table SI-10 c)
Fig. SI-11 Absorption spectra of (a) 1 and 6 (neat) at 100nm film thickness and (b) 1 and 6 blended with PCB71BM and using 1,8-octanedithiol processing additive at 120nm film thickness.