Supporting information

Triindole-Cored Star-Shaped Molecules for Organic Solar Cells

Zhen Lu, a,b Cuihong Li, a,d Tao Fang, a Guangwu Li a and Zhishan Bo a,d

a Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China. Fax: +86 10 62206891; Tel: + 86 10 62206891; E-mail: licuihong@bnu.edu.cn; zsbo@bnu.edu.cn
b College of Chemistry and Chemical Engineering, ShanXi DaTong University, DaTong 037009,China

Figure S1. The transfer characteristic curves of spin-coated films of SM-1 (a) and SM-2 (b) on OTS-treated Si/SiO₂ substrates.

Figure S2. The output and transfer characteristic curves of the blend films of SM-1 and PC₇₁BM on OTS-treated Si/SiO₂ substrates. µ = 1.13 × 10⁻⁵ cm² V⁻¹ s⁻¹

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A
This journal is © The Royal Society of Chemistry 2013
Figure S3. The output and transfer characteristic curves of the blend films of SM-1 and PC_{71}BM on OTS-treated Si/SiO_{2} substrates. $\mu = 2.05 \times 10^{-4}$ cm2 V$^{-1}$ s$^{-1}$

Figure S4. DSC traces of SM-1 and SM-2 measured at a heating rate 20 °C/min and a N$_2$ flow of 50 mL/min.
Figure S5. The MAILD-TOF spectra of SM1
Figure S6. The high resolution MS of SM1
Figure S6. 1H NMR spectrum of SM-1 (measured in 1,2-dichlorobenzene-d$_4$ at 80 °C) and the assignment of the peaks.
Figure S7. 1H NMR spectrum of SM-1 (measured in 1,2-dichlorobenzene-d$_4$ at 80 °C).
Figure S8. 13C NMR spectrum of SM-1 (measured in 1,2-dichlorobenzene-d_4 at 80 $^\circ$C).