Supporting Information

Novel rGO/α-Fe₂O₃ Composite Hydrogel: Synthesis, Characterization and High Performance of Electromagnetic Wave Absorption

Hui Zhang, a,c Anjian Xie, c Cuiping Wang, c Haisheng Wang, b Yuhua Shen*, b and Xingyou Tian*, a

a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China.

b School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, P. R. China

c School of Physics and Materials Science, Anhui University, Hefei 230039, P. R. China

* To whom correspondence should be addressed, Email:

s_yuhua@163.com, xytian@issp.ac.cn
Fig. S1 TG analyses of product-1 to product-3 measured from 50 to 700°C at a heating rate of 10 °C min⁻¹ in air.
Fig. S2 Reflection loss curves for the 2D rGO/α-Fe$_2$O$_3$ composite with different thickness in the frequency range of 1-18 GHz (the weight ratio of the raw material as GO to Fe$_3$O$_4$ nanoparticles is 4:5)