Supplementary Information

High-energy-density nonaqueous MnO$_2$@nanoporous gold based supercapacitors

L. Y. Chen, a J. L. Kang, a Y. Hou, a P. Liu, a T. Fujita, a A. Hirata a and M. W. Chen abc*

a World Premier International (WPI) Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

b CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

c State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China

* Corresponding author. E-mail address: mwchen@wpi-aimr.tohoku.ac.jp
Fig. S1. SEM images of (a) pure NPG and (b-e) MnO$_2$@NPG with plating time of 2.5, 5, 7.5, 10 min.
Fig. S2. TEM images of (a, b) pure NPG and (c) MnO$_2$@NPG with plating time of 0.5 min.
Fig. S3. EIS spectra of the MnO$_2$@NPG supercapacitors with different MnO$_2$ loading amounts in the EMI-DCA electrolyte.