Supplementary Information

Photoelectric properties and charge dynamics for a set of solid state solar cells with Cu₄Bi₄S₉ as absorber layer†

Xiangyang Liu,*a Haiwu Zheng,a Jiwei Zhang,b Yin Xiao,a and Zhiyong Wang*a

*a Key Laboratory of Photovoltaic Materials of Henan Province and School of Physics & Electronics, Henan University, Kaifeng 475004, P.R. China

b The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, P.R. China

E-mail: lxy081276@126.com

Supplementary Tables

Table SI1 The efficiencies of four types of cells with different carrier mobility in sensitized electrodes.

<table>
<thead>
<tr>
<th>sensitized electrodes</th>
<th>carrier mobility (cm²V⁻¹s⁻¹)</th>
<th>efficiency (%)</th>
<th>carrier mobility (cm²V⁻¹s⁻¹)</th>
<th>efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In₂O₃ electrode</td>
<td>11.8</td>
<td>5.6</td>
<td>14.2</td>
<td>6.2</td>
</tr>
<tr>
<td>ZnO electrode</td>
<td>12.7</td>
<td>4.2</td>
<td>16.4</td>
<td>4.8</td>
</tr>
<tr>
<td>TiO₂ electrode</td>
<td>26.4</td>
<td>5.0</td>
<td>38.5</td>
<td>5.5</td>
</tr>
<tr>
<td>SnO₂ electrode</td>
<td>10.5</td>
<td>3.3</td>
<td>12.6</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Supplementary Figures

Fig. S11 The schematic diagram of sandwich structure consisting of ITO (indium tin oxide) and sample in the steady state and electric field induced-surface photovoltage spectroscopy. (E_c: the bottom of conduction band; E_v: the top of valence band; E_f: the Fermi energy level; ΔV: the difference of different surface potential; V_s^0: the surface potential before illumination; V_s^1: the surface potential after illumination; $V_s^1 < 0$; $h\nu$: the incident photon energy).
Fig. S12 ((a) and (b)) Low-magnification SEM images of CBS nanoribbons.
Fig. S13 (a), (b), (c) and (d) High-magnification SEM images of CBS nanoribbons.
Fig. SI4 SEM images of (a) In$_2$O$_3$, (b) ZnO, (c) TiO$_2$, and (d) SnO$_2$ thin films, respectively.
Fig. S15 ((a), (b), (c) and (d)) TEM images of CBS nanoribbons.
Fig. S16 The transport mechanism of photogenerated charges under zero and positive bias in four sensitized electrodes (E_c: the bottom of conduction band; E_v: the top of valence band; E_f: the Fermi energy level; ΔE_c: the difference of conduction band edges at the interface; ΔE_v: the difference of valence band edges at the interface; NHE: the normal hydrogen electrode; AVS: the absolute vacuum energy scale; $h\nu$: the energy of photon).
Fig. SI7 The plots of $F(R)h\nu$ against the photo energy about (a) In$_2$O$_3$, (b) ZnO, (c) TiO$_2$, and (d) SnO$_2$, respectively.